Properties

Label 35.1423e15_2153e15.70.1
Dimension 35
Group $S_7$
Conductor $ 1423^{15} \cdot 2153^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$19666811200426732144066368076512121483162964186704361721620577015044419019740994965984152151963799= 1423^{15} \cdot 2153^{15} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + x^{5} + 4 x^{4} - 5 x^{3} + x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 45\cdot 47 + 44\cdot 47^{2} + 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 43 + \left(19 a + 11\right)\cdot 47 + \left(27 a + 25\right)\cdot 47^{2} + \left(3 a + 26\right)\cdot 47^{3} + \left(37 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 27\cdot 47 + 16\cdot 47^{2} + 23\cdot 47^{3} + 29\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 44 + \left(27 a + 26\right)\cdot 47 + \left(19 a + 13\right)\cdot 47^{2} + \left(43 a + 6\right)\cdot 47^{3} + \left(9 a + 14\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 + 4\cdot 47 + 10\cdot 47^{2} + 46\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 35\cdot 47^{2} + 14\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 9 + 24\cdot 47 + 42\cdot 47^{2} + 21\cdot 47^{3} + 17\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.