Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 173 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 173 }$: $ x^{2} + 169 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 48 a + 164 + \left(89 a + 96\right)\cdot 173 + \left(29 a + 76\right)\cdot 173^{2} + \left(86 a + 34\right)\cdot 173^{3} + \left(48 a + 147\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 117 + 36\cdot 173 + 73\cdot 173^{2} + 52\cdot 173^{3} + 163\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 22 + 130\cdot 173 + 103\cdot 173^{2} + 120\cdot 173^{3} + 131\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 125 a + 10 + \left(83 a + 60\right)\cdot 173 + \left(143 a + 105\right)\cdot 173^{2} + \left(86 a + 3\right)\cdot 173^{3} + \left(124 a + 82\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 20 + 158\cdot 173 + 160\cdot 173^{2} + 76\cdot 173^{3} + 136\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 134 + 134\cdot 173 + 22\cdot 173^{2} + 41\cdot 173^{3} + 97\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 53 + 75\cdot 173 + 149\cdot 173^{2} + 16\cdot 173^{3} + 107\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $35$ |
| $21$ | $2$ | $(1,2)$ | $-5$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $-1$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $70$ | $3$ | $(1,2,3)$ | $-1$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
| $210$ | $4$ | $(1,2,3,4)$ | $1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $-1$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $0$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $0$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.