Properties

Label 35.109e20_269e20_2153e20.126.1
Dimension 35
Group $S_7$
Conductor $ 109^{20} \cdot 269^{20} \cdot 2153^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1010313498086367798215784114968040535625065870720676881534876335110333460418647872585084542368754105379141725115109801521290069418693377658626026546535012801= 109^{20} \cdot 269^{20} \cdot 2153^{20} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 8 x^{4} + 6 x^{3} - 7 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 51 + \left(46 a + 9\right)\cdot 67 + \left(35 a + 44\right)\cdot 67^{2} + 47 a\cdot 67^{3} + \left(42 a + 59\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 67 + 61\cdot 67^{2} + 8\cdot 67^{3} + 13\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 18 + \left(64 a + 11\right)\cdot 67 + \left(39 a + 3\right)\cdot 67^{2} + \left(44 a + 28\right)\cdot 67^{3} + \left(12 a + 50\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 5 + \left(20 a + 39\right)\cdot 67 + \left(31 a + 6\right)\cdot 67^{2} + \left(19 a + 21\right)\cdot 67^{3} + \left(24 a + 48\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 a + 63 + \left(7 a + 56\right)\cdot 67 + \left(2 a + 26\right)\cdot 67^{2} + \left(55 a + 46\right)\cdot 67^{3} + \left(41 a + 64\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 62 + \left(59 a + 37\right)\cdot 67 + \left(64 a + 27\right)\cdot 67^{2} + \left(11 a + 63\right)\cdot 67^{3} + \left(25 a + 42\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 a + 43 + \left(2 a + 44\right)\cdot 67 + \left(27 a + 31\right)\cdot 67^{2} + \left(22 a + 32\right)\cdot 67^{3} + \left(54 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.