Properties

Label 35.107e15_21557e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 107^{15} \cdot 21557^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$278343760981136042120801246774474576193180676510700270347019900817402542277132910496604340798999= 107^{15} \cdot 21557^{15} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} + x^{3} + 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd
Determinant: 1.107_21557.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 48 a + 16 + \left(4 a + 4\right)\cdot 53 + \left(46 a + 6\right)\cdot 53^{2} + \left(38 a + 39\right)\cdot 53^{3} + \left(24 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 14 + \left(51 a + 30\right)\cdot 53 + \left(17 a + 47\right)\cdot 53^{2} + \left(31 a + 31\right)\cdot 53^{3} + \left(4 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 13 + \left(41 a + 24\right)\cdot 53 + \left(38 a + 5\right)\cdot 53^{2} + \left(50 a + 33\right)\cdot 53^{3} + \left(14 a + 8\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 49 + \left(48 a + 28\right)\cdot 53 + \left(6 a + 26\right)\cdot 53^{2} + \left(14 a + 42\right)\cdot 53^{3} + \left(28 a + 14\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 39 + \left(11 a + 51\right)\cdot 53 + \left(14 a + 12\right)\cdot 53^{2} + \left(2 a + 38\right)\cdot 53^{3} + \left(38 a + 17\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 + 35\cdot 53 + 45\cdot 53^{2} + 46\cdot 53^{3} + 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 12 a + 19 + \left(a + 37\right)\cdot 53 + \left(35 a + 14\right)\cdot 53^{2} + \left(21 a + 33\right)\cdot 53^{3} + \left(48 a + 47\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.