Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 179 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 179 }$: $ x^{2} + 172 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 50 a + 108 + \left(151 a + 150\right)\cdot 179 + \left(84 a + 126\right)\cdot 179^{2} + \left(46 a + 60\right)\cdot 179^{3} + \left(118 a + 165\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 157 a + 29 + \left(160 a + 35\right)\cdot 179 + \left(20 a + 160\right)\cdot 179^{2} + \left(97 a + 167\right)\cdot 179^{3} + \left(166 a + 160\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 157 a + 144 + \left(44 a + 35\right)\cdot 179 + \left(138 a + 126\right)\cdot 179^{2} + \left(131 a + 107\right)\cdot 179^{3} + \left(82 a + 170\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 a + 54 + \left(18 a + 109\right)\cdot 179 + \left(158 a + 145\right)\cdot 179^{2} + \left(81 a + 110\right)\cdot 179^{3} + \left(12 a + 155\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 129 a + 100 + \left(27 a + 85\right)\cdot 179 + \left(94 a + 32\right)\cdot 179^{2} + \left(132 a + 122\right)\cdot 179^{3} + \left(60 a + 51\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 a + 169 + \left(134 a + 13\right)\cdot 179 + \left(40 a + 154\right)\cdot 179^{2} + \left(47 a + 175\right)\cdot 179^{3} + \left(96 a + 80\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 112 + 106\cdot 179 + 149\cdot 179^{2} + 149\cdot 179^{3} + 109\cdot 179^{4} +O\left(179^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$35$ |
| $21$ |
$2$ |
$(1,2)$ |
$5$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$1$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$0$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.