Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(985\)\(\medspace = 5 \cdot 197 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.985.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | even |
Determinant: | 1.985.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.0.985.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} + 2x^{2} - 3x + 2 \) . |
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 57 + 303\cdot 311 + 7\cdot 311^{2} + 99\cdot 311^{3} + 136\cdot 311^{4} +O(311^{5})\) |
$r_{ 2 }$ | $=$ | \( 147 + 102\cdot 311 + 247\cdot 311^{2} + 14\cdot 311^{3} + 119\cdot 311^{4} +O(311^{5})\) |
$r_{ 3 }$ | $=$ | \( 154 + 52\cdot 311 + 261\cdot 311^{2} + 143\cdot 311^{3} + 208\cdot 311^{4} +O(311^{5})\) |
$r_{ 4 }$ | $=$ | \( 265 + 163\cdot 311 + 105\cdot 311^{2} + 53\cdot 311^{3} + 158\cdot 311^{4} +O(311^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | ✓ |
$6$ | $2$ | $(1,2)$ | $1$ | |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |