Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(892\)\(\medspace = 2^{2} \cdot 223 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.892.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | even |
Determinant: | 1.892.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.0.892.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} - x^{2} + 2 \) . |
The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 21 + 18\cdot 79 + 32\cdot 79^{2} + 60\cdot 79^{3} + 9\cdot 79^{4} +O(79^{5})\) |
$r_{ 2 }$ | $=$ | \( 33 + 22\cdot 79 + 13\cdot 79^{2} + 5\cdot 79^{3} + 59\cdot 79^{4} +O(79^{5})\) |
$r_{ 3 }$ | $=$ | \( 36 + 62\cdot 79 + 7\cdot 79^{2} + 14\cdot 79^{4} +O(79^{5})\) |
$r_{ 4 }$ | $=$ | \( 69 + 54\cdot 79 + 25\cdot 79^{2} + 13\cdot 79^{3} + 75\cdot 79^{4} +O(79^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | ✓ |
$6$ | $2$ | $(1,2)$ | $1$ | |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |