Properties

Label 3.8069e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 8069^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$65108761= 8069^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{2} - x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 419 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 44 + 292\cdot 419 + 258\cdot 419^{2} + 43\cdot 419^{3} + 392\cdot 419^{4} +O\left(419^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 154 + 267\cdot 419 + 382\cdot 419^{2} + 205\cdot 419^{3} + 281\cdot 419^{4} +O\left(419^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 319 + 349\cdot 419 + 380\cdot 419^{2} + 53\cdot 419^{3} + 319\cdot 419^{4} +O\left(419^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 321 + 347\cdot 419 + 234\cdot 419^{2} + 115\cdot 419^{3} + 264\cdot 419^{4} +O\left(419^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.