Properties

Label 3.8069e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 8069^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$65108761= 8069^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 5 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 2\cdot 7^{2} + 4\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 6\cdot 7 + 3\cdot 7^{2} + 3\cdot 7^{3} + 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + \left(a + 5\right)\cdot 7 + a\cdot 7^{2} + \left(6 a + 6\right)\cdot 7^{3} + \left(3 a + 1\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 5 + \left(5 a + 1\right)\cdot 7 + 5 a\cdot 7^{2} + 4\cdot 7^{3} + \left(3 a + 6\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.