Properties

Label 3.7e5_11e3.7t3.1c1
Dimension 3
Group $C_7:C_3$
Conductor $ 7^{5} \cdot 11^{3}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_7:C_3$
Conductor:$22370117= 7^{5} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{7} - 77 x^{5} + 1694 x^{3} - 9317 x - 8228 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_7:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 21.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 9\cdot 17 + 3\cdot 17^{2} + 14\cdot 17^{3} + 13\cdot 17^{4} + 12\cdot 17^{5} + 13\cdot 17^{6} + 4\cdot 17^{7} + 17^{8} + 16\cdot 17^{9} + 12\cdot 17^{10} + 6\cdot 17^{11} + 5\cdot 17^{12} + 5\cdot 17^{13} + 16\cdot 17^{14} + 16\cdot 17^{15} + 11\cdot 17^{16} + 4\cdot 17^{17} + 10\cdot 17^{18} + 9\cdot 17^{19} + 9\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 2 }$ $=$ $ 16 a^{2} + 15 a + 6 + \left(3 a^{2} + 12 a + 2\right)\cdot 17 + \left(5 a^{2} + a + 15\right)\cdot 17^{2} + \left(13 a^{2} + 5 a + 14\right)\cdot 17^{3} + \left(6 a^{2} + a + 8\right)\cdot 17^{4} + \left(5 a^{2} + 1\right)\cdot 17^{5} + \left(16 a^{2} + 7 a + 14\right)\cdot 17^{6} + \left(6 a + 8\right)\cdot 17^{7} + \left(2 a^{2} + 15 a + 9\right)\cdot 17^{8} + \left(7 a^{2} + 13 a + 11\right)\cdot 17^{9} + \left(4 a^{2} + 2 a + 13\right)\cdot 17^{10} + \left(4 a^{2} + 4 a + 11\right)\cdot 17^{11} + \left(3 a + 16\right)\cdot 17^{12} + \left(2 a^{2} + 13 a + 7\right)\cdot 17^{13} + \left(9 a^{2} + 6 a + 1\right)\cdot 17^{14} + \left(11 a^{2} + 10 a + 1\right)\cdot 17^{15} + \left(10 a^{2} + 5 a + 10\right)\cdot 17^{16} + \left(16 a^{2} + 13 a + 4\right)\cdot 17^{17} + \left(6 a^{2} + 2 a + 4\right)\cdot 17^{18} + \left(2 a + 4\right)\cdot 17^{19} + \left(7 a^{2} + a + 12\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 9 a + 8 + \left(4 a^{2} + 5 a + 2\right)\cdot 17 + \left(4 a^{2} + 4 a + 3\right)\cdot 17^{2} + \left(6 a^{2} + 7 a + 10\right)\cdot 17^{3} + \left(9 a^{2} + 13 a + 10\right)\cdot 17^{4} + \left(8 a^{2} + 11 a + 3\right)\cdot 17^{5} + \left(14 a^{2} + 12 a + 7\right)\cdot 17^{6} + \left(16 a^{2} + 2 a + 2\right)\cdot 17^{7} + \left(6 a^{2} + 5 a + 7\right)\cdot 17^{8} + \left(14 a^{2} + 11 a + 16\right)\cdot 17^{9} + \left(7 a^{2} + 5 a + 15\right)\cdot 17^{10} + \left(7 a^{2} + 13 a + 13\right)\cdot 17^{11} + \left(9 a^{2} + 11 a + 5\right)\cdot 17^{12} + \left(10 a^{2} + 9 a + 2\right)\cdot 17^{13} + \left(5 a^{2} + 13 a + 16\right)\cdot 17^{14} + \left(4 a^{2} + 13 a + 1\right)\cdot 17^{15} + \left(9 a^{2} + 14 a + 9\right)\cdot 17^{16} + \left(9 a^{2} + 6 a + 5\right)\cdot 17^{17} + \left(16 a^{2} + 6 a + 16\right)\cdot 17^{18} + \left(7 a^{2} + 14 a + 14\right)\cdot 17^{19} + \left(4 a^{2} + 6 a + 4\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 4 }$ $=$ $ a^{2} + 7 a + 11 + \left(10 a^{2} + 11 a + 9\right)\cdot 17 + \left(14 a^{2} + 5 a + 2\right)\cdot 17^{2} + \left(12 a + 1\right)\cdot 17^{3} + \left(4 a^{2} + 11 a + 5\right)\cdot 17^{4} + \left(3 a^{2} + 12 a + 11\right)\cdot 17^{5} + \left(10 a^{2} + 12 a + 4\right)\cdot 17^{6} + \left(15 a^{2} + 6 a + 6\right)\cdot 17^{7} + \left(11 a^{2} + 6 a + 16\right)\cdot 17^{8} + \left(13 a^{2} + 16 a + 13\right)\cdot 17^{9} + \left(8 a^{2} + 15 a + 7\right)\cdot 17^{10} + \left(14 a^{2} + 12 a + 15\right)\cdot 17^{11} + \left(13 a + 4\right)\cdot 17^{12} + \left(3 a^{2} + 11 a + 16\right)\cdot 17^{13} + \left(8 a^{2} + 8 a + 15\right)\cdot 17^{14} + \left(15 a^{2} + 13 a + 16\right)\cdot 17^{15} + \left(8 a^{2} + 4 a + 15\right)\cdot 17^{16} + \left(12 a^{2} + 12 a + 1\right)\cdot 17^{17} + \left(8 a^{2} + 11 a + 14\right)\cdot 17^{18} + \left(5 a^{2} + 7\right)\cdot 17^{19} + \left(16 a^{2} + 12 a + 11\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 2 a + 11 + \left(16 a^{2} + 6 a + 13\right)\cdot 17 + \left(2 a^{2} + 8 a + 11\right)\cdot 17^{2} + \left(13 a^{2} + 2 a + 3\right)\cdot 17^{3} + \left(9 a^{2} + 3 a + 3\right)\cdot 17^{4} + \left(6 a^{2} + 13 a + 2\right)\cdot 17^{5} + \left(4 a + 15\right)\cdot 17^{6} + \left(4 a^{2} + 16 a + 9\right)\cdot 17^{7} + \left(15 a^{2} + 2 a + 1\right)\cdot 17^{8} + \left(3 a^{2} + 16 a + 13\right)\cdot 17^{9} + \left(6 a^{2} + 14 a + 11\right)\cdot 17^{10} + \left(13 a^{2} + 15 a + 14\right)\cdot 17^{11} + \left(15 a^{2} + a + 14\right)\cdot 17^{12} + \left(12 a^{2} + a + 5\right)\cdot 17^{13} + \left(6 a^{2} + 2 a + 9\right)\cdot 17^{14} + \left(16 a^{2} + a\right)\cdot 17^{15} + \left(12 a^{2} + 15 a + 13\right)\cdot 17^{16} + \left(16 a^{2} + 11 a + 4\right)\cdot 17^{17} + \left(15 a^{2} + 12 a + 13\right)\cdot 17^{18} + \left(14 a^{2} + 11 a + 2\right)\cdot 17^{19} + \left(7 a^{2} + 3 a\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 8 a + 9 + \left(7 a^{2} + 16 a + 2\right)\cdot 17 + \left(16 a^{2} + 2 a + 15\right)\cdot 17^{2} + \left(2 a^{2} + 2 a + 13\right)\cdot 17^{3} + \left(3 a^{2} + 2 a + 15\right)\cdot 17^{4} + \left(7 a^{2} + 8 a + 13\right)\cdot 17^{5} + \left(6 a^{2} + 16 a + 7\right)\cdot 17^{6} + \left(14 a^{2} + 10 a + 5\right)\cdot 17^{7} + \left(6 a^{2} + 7 a + 7\right)\cdot 17^{8} + \left(16 a^{2} + a + 4\right)\cdot 17^{9} + \left(a^{2} + 3 a + 3\right)\cdot 17^{10} + \left(6 a^{2} + 5 a + 4\right)\cdot 17^{11} + \left(a + 10\right)\cdot 17^{12} + \left(a^{2} + 4 a + 3\right)\cdot 17^{13} + \left(2 a^{2} + 6 a + 6\right)\cdot 17^{14} + \left(2 a^{2} + 2 a + 2\right)\cdot 17^{15} + \left(12 a^{2} + 14 a + 1\right)\cdot 17^{16} + \left(4 a^{2} + 9 a + 8\right)\cdot 17^{17} + \left(9 a^{2} + 9 a + 14\right)\cdot 17^{18} + \left(13 a^{2} + 4 a + 1\right)\cdot 17^{19} + \left(9 a^{2} + a + 7\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 7 }$ $=$ $ 16 a^{2} + 10 a + 6 + \left(8 a^{2} + 15 a + 11\right)\cdot 17 + \left(7 a^{2} + 10 a + 16\right)\cdot 17^{2} + \left(14 a^{2} + 4 a + 9\right)\cdot 17^{3} + \left(2 a + 10\right)\cdot 17^{4} + \left(3 a^{2} + 5 a + 5\right)\cdot 17^{5} + \left(3 a^{2} + 14 a + 5\right)\cdot 17^{6} + \left(16 a^{2} + 7 a + 13\right)\cdot 17^{7} + \left(7 a^{2} + 13 a + 7\right)\cdot 17^{8} + \left(12 a^{2} + 8 a + 9\right)\cdot 17^{9} + \left(4 a^{2} + 8 a + 2\right)\cdot 17^{10} + \left(5 a^{2} + 16 a + 1\right)\cdot 17^{11} + \left(7 a^{2} + a + 10\right)\cdot 17^{12} + \left(4 a^{2} + 11 a + 9\right)\cdot 17^{13} + \left(2 a^{2} + 13 a + 2\right)\cdot 17^{14} + \left(a^{2} + 9 a + 11\right)\cdot 17^{15} + \left(14 a^{2} + 13 a + 6\right)\cdot 17^{16} + \left(7 a^{2} + 13 a + 4\right)\cdot 17^{17} + \left(10 a^{2} + 7 a + 12\right)\cdot 17^{18} + \left(8 a^{2} + 9\right)\cdot 17^{19} + \left(5 a^{2} + 9 a + 5\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,4)(3,6,7)$
$(1,2,3,4,7,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$7$$3$$(1,2,4)(3,6,7)$$0$
$7$$3$$(1,4,2)(3,7,6)$$0$
$3$$7$$(1,2,3,4,7,6,5)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$3$$7$$(1,4,5,3,6,2,7)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.