Properties

Label 3.7e3_43.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{3} \cdot 43 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$14749= 7^{3} \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 8 x^{3} + 2 x^{2} - 11 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 91 + \left(118 a + 55\right)\cdot 127 + \left(37 a + 122\right)\cdot 127^{2} + \left(32 a + 89\right)\cdot 127^{3} + \left(111 a + 98\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 115 a + 103 + \left(8 a + 34\right)\cdot 127 + \left(89 a + 42\right)\cdot 127^{2} + \left(94 a + 84\right)\cdot 127^{3} + \left(15 a + 50\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 a + 53 + \left(69 a + 18\right)\cdot 127 + \left(36 a + 126\right)\cdot 127^{2} + \left(21 a + 40\right)\cdot 127^{3} + \left(5 a + 56\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 33\cdot 127 + 105\cdot 127^{2} + 45\cdot 127^{3} + 108\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 81 a + 99 + \left(57 a + 41\right)\cdot 127 + \left(90 a + 93\right)\cdot 127^{2} + \left(105 a + 25\right)\cdot 127^{3} + \left(121 a + 40\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 + 70\cdot 127 + 18\cdot 127^{2} + 94\cdot 127^{3} + 26\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,3,4)(2,5,6)$
$(4,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-3$
$3$ $2$ $(1,2)$ $1$
$3$ $2$ $(1,2)(3,5)$ $-1$
$4$ $3$ $(1,3,4)(2,5,6)$ $0$
$4$ $3$ $(1,4,3)(2,6,5)$ $0$
$4$ $6$ $(1,5,6,2,3,4)$ $0$
$4$ $6$ $(1,4,3,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.