Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16\cdot 47 + 38\cdot 47^{2} + 41\cdot 47^{4} + 40\cdot 47^{5} + 27\cdot 47^{6} + 34\cdot 47^{7} + 6\cdot 47^{8} + 11\cdot 47^{9} + 33\cdot 47^{10} + 44\cdot 47^{11} + 45\cdot 47^{12} + 11\cdot 47^{13} + 29\cdot 47^{14} + 41\cdot 47^{15} + 34\cdot 47^{16} + 12\cdot 47^{17} + 7\cdot 47^{18} + 8\cdot 47^{19} + 33\cdot 47^{20} + 23\cdot 47^{21} + 44\cdot 47^{22} + 13\cdot 47^{24} +O\left(47^{ 25 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 1 + 31\cdot 47 + 8\cdot 47^{2} + 46\cdot 47^{3} + 5\cdot 47^{4} + 6\cdot 47^{5} + 19\cdot 47^{6} + 12\cdot 47^{7} + 40\cdot 47^{8} + 35\cdot 47^{9} + 13\cdot 47^{10} + 2\cdot 47^{11} + 47^{12} + 35\cdot 47^{13} + 17\cdot 47^{14} + 5\cdot 47^{15} + 12\cdot 47^{16} + 34\cdot 47^{17} + 39\cdot 47^{18} + 38\cdot 47^{19} + 13\cdot 47^{20} + 23\cdot 47^{21} + 2\cdot 47^{22} + 46\cdot 47^{23} + 33\cdot 47^{24} +O\left(47^{ 25 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 a + 10 + \left(29 a + 27\right)\cdot 47 + \left(7 a + 44\right)\cdot 47^{2} + \left(21 a + 14\right)\cdot 47^{3} + \left(25 a + 46\right)\cdot 47^{4} + \left(28 a + 8\right)\cdot 47^{5} + \left(39 a + 18\right)\cdot 47^{6} + \left(26 a + 38\right)\cdot 47^{7} + \left(15 a + 29\right)\cdot 47^{8} + \left(31 a + 4\right)\cdot 47^{9} + \left(9 a + 38\right)\cdot 47^{10} + \left(4 a + 23\right)\cdot 47^{11} + \left(32 a + 27\right)\cdot 47^{12} + \left(10 a + 18\right)\cdot 47^{13} + \left(39 a + 37\right)\cdot 47^{14} + \left(13 a + 33\right)\cdot 47^{15} + \left(44 a + 24\right)\cdot 47^{16} + \left(9 a + 39\right)\cdot 47^{17} + \left(27 a + 5\right)\cdot 47^{18} + \left(18 a + 24\right)\cdot 47^{19} + \left(20 a + 26\right)\cdot 47^{20} + \left(43 a + 46\right)\cdot 47^{21} + \left(6 a + 45\right)\cdot 47^{22} + \left(21 a + 30\right)\cdot 47^{23} + \left(35 a + 45\right)\cdot 47^{24} +O\left(47^{ 25 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 a + 16 + \left(29 a + 19\right)\cdot 47 + \left(7 a + 16\right)\cdot 47^{2} + \left(21 a + 44\right)\cdot 47^{3} + \left(25 a + 17\right)\cdot 47^{4} + \left(28 a + 6\right)\cdot 47^{5} + \left(39 a + 25\right)\cdot 47^{6} + \left(26 a + 41\right)\cdot 47^{7} + \left(15 a + 12\right)\cdot 47^{8} + \left(31 a + 42\right)\cdot 47^{9} + \left(9 a + 20\right)\cdot 47^{10} + \left(4 a + 24\right)\cdot 47^{11} + \left(32 a + 6\right)\cdot 47^{12} + \left(10 a + 39\right)\cdot 47^{13} + \left(39 a + 35\right)\cdot 47^{14} + \left(13 a + 24\right)\cdot 47^{15} + \left(44 a + 41\right)\cdot 47^{16} + \left(9 a + 31\right)\cdot 47^{17} + \left(27 a + 43\right)\cdot 47^{18} + \left(18 a + 12\right)\cdot 47^{19} + \left(20 a + 45\right)\cdot 47^{20} + \left(43 a + 27\right)\cdot 47^{21} + \left(6 a + 30\right)\cdot 47^{22} + \left(21 a + 27\right)\cdot 47^{23} + \left(35 a + 45\right)\cdot 47^{24} +O\left(47^{ 25 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 36 a + 38 + \left(17 a + 19\right)\cdot 47 + \left(39 a + 2\right)\cdot 47^{2} + \left(25 a + 32\right)\cdot 47^{3} + 21 a\cdot 47^{4} + \left(18 a + 38\right)\cdot 47^{5} + \left(7 a + 28\right)\cdot 47^{6} + \left(20 a + 8\right)\cdot 47^{7} + \left(31 a + 17\right)\cdot 47^{8} + \left(15 a + 42\right)\cdot 47^{9} + \left(37 a + 8\right)\cdot 47^{10} + \left(42 a + 23\right)\cdot 47^{11} + \left(14 a + 19\right)\cdot 47^{12} + \left(36 a + 28\right)\cdot 47^{13} + \left(7 a + 9\right)\cdot 47^{14} + \left(33 a + 13\right)\cdot 47^{15} + \left(2 a + 22\right)\cdot 47^{16} + \left(37 a + 7\right)\cdot 47^{17} + \left(19 a + 41\right)\cdot 47^{18} + \left(28 a + 22\right)\cdot 47^{19} + \left(26 a + 20\right)\cdot 47^{20} + 3 a\cdot 47^{21} + \left(40 a + 1\right)\cdot 47^{22} + \left(25 a + 16\right)\cdot 47^{23} + \left(11 a + 1\right)\cdot 47^{24} +O\left(47^{ 25 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 36 a + 32 + \left(17 a + 27\right)\cdot 47 + \left(39 a + 30\right)\cdot 47^{2} + \left(25 a + 2\right)\cdot 47^{3} + \left(21 a + 29\right)\cdot 47^{4} + \left(18 a + 40\right)\cdot 47^{5} + \left(7 a + 21\right)\cdot 47^{6} + \left(20 a + 5\right)\cdot 47^{7} + \left(31 a + 34\right)\cdot 47^{8} + \left(15 a + 4\right)\cdot 47^{9} + \left(37 a + 26\right)\cdot 47^{10} + \left(42 a + 22\right)\cdot 47^{11} + \left(14 a + 40\right)\cdot 47^{12} + \left(36 a + 7\right)\cdot 47^{13} + \left(7 a + 11\right)\cdot 47^{14} + \left(33 a + 22\right)\cdot 47^{15} + \left(2 a + 5\right)\cdot 47^{16} + \left(37 a + 15\right)\cdot 47^{17} + \left(19 a + 3\right)\cdot 47^{18} + \left(28 a + 34\right)\cdot 47^{19} + \left(26 a + 1\right)\cdot 47^{20} + \left(3 a + 19\right)\cdot 47^{21} + \left(40 a + 16\right)\cdot 47^{22} + \left(25 a + 19\right)\cdot 47^{23} + \left(11 a + 1\right)\cdot 47^{24} +O\left(47^{ 25 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,3,4)(2,5,6)$ |
| $(1,3)(2,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $2$ | $(1,2)(3,5)(4,6)$ | $-3$ |
| $3$ | $2$ | $(4,6)$ | $1$ |
| $3$ | $2$ | $(1,2)(4,6)$ | $-1$ |
| $6$ | $2$ | $(1,3)(2,5)$ | $1$ |
| $6$ | $2$ | $(1,3)(2,5)(4,6)$ | $-1$ |
| $8$ | $3$ | $(1,3,4)(2,5,6)$ | $0$ |
| $6$ | $4$ | $(1,4,2,6)$ | $1$ |
| $6$ | $4$ | $(1,4,2,6)(3,5)$ | $-1$ |
| $8$ | $6$ | $(1,3,4,2,5,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.