Properties

Label 3.7e3_19_43e3_103.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 7^{3} \cdot 19 \cdot 43^{3} \cdot 103 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$53369153257= 7^{3} \cdot 19 \cdot 43^{3} \cdot 103 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 610 x^{4} + 1434 x^{3} + 67148 x^{2} + 74707 x - 367426 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.7_19_43_103.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 40 + \left(67 a + 59\right)\cdot 73 + \left(32 a + 28\right)\cdot 73^{2} + \left(28 a + 18\right)\cdot 73^{3} + \left(53 a + 62\right)\cdot 73^{4} + \left(72 a + 12\right)\cdot 73^{5} + \left(51 a + 8\right)\cdot 73^{6} + \left(11 a + 32\right)\cdot 73^{7} + \left(18 a + 23\right)\cdot 73^{8} + \left(43 a + 32\right)\cdot 73^{9} + \left(36 a + 14\right)\cdot 73^{10} + \left(16 a + 60\right)\cdot 73^{11} + \left(16 a + 9\right)\cdot 73^{12} + \left(25 a + 23\right)\cdot 73^{13} + \left(66 a + 59\right)\cdot 73^{14} + \left(50 a + 64\right)\cdot 73^{15} + \left(28 a + 36\right)\cdot 73^{16} +O\left(73^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 52 + 64\cdot 73 + 45\cdot 73^{2} + 70\cdot 73^{3} + 28\cdot 73^{4} + 32\cdot 73^{5} + 16\cdot 73^{6} + 7\cdot 73^{7} + 69\cdot 73^{8} + 59\cdot 73^{9} + 23\cdot 73^{10} + 65\cdot 73^{11} + 44\cdot 73^{12} + 5\cdot 73^{13} + 23\cdot 73^{14} + 46\cdot 73^{15} + 49\cdot 73^{16} +O\left(73^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 56 + \left(5 a + 62\right)\cdot 73 + \left(40 a + 59\right)\cdot 73^{2} + \left(44 a + 70\right)\cdot 73^{3} + \left(19 a + 47\right)\cdot 73^{4} + 31\cdot 73^{5} + \left(21 a + 18\right)\cdot 73^{6} + \left(61 a + 15\right)\cdot 73^{7} + \left(54 a + 66\right)\cdot 73^{8} + \left(29 a + 70\right)\cdot 73^{9} + \left(36 a + 7\right)\cdot 73^{10} + 56 a\cdot 73^{11} + \left(56 a + 42\right)\cdot 73^{12} + \left(47 a + 9\right)\cdot 73^{13} + \left(6 a + 14\right)\cdot 73^{14} + \left(22 a + 5\right)\cdot 73^{15} + \left(44 a + 72\right)\cdot 73^{16} +O\left(73^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 70 + \left(3 a + 39\right)\cdot 73 + \left(6 a + 16\right)\cdot 73^{2} + \left(15 a + 56\right)\cdot 73^{3} + \left(9 a + 68\right)\cdot 73^{4} + \left(71 a + 1\right)\cdot 73^{5} + \left(61 a + 50\right)\cdot 73^{6} + \left(59 a + 45\right)\cdot 73^{7} + \left(63 a + 31\right)\cdot 73^{8} + \left(10 a + 5\right)\cdot 73^{9} + \left(52 a + 12\right)\cdot 73^{10} + \left(59 a + 19\right)\cdot 73^{11} + \left(51 a + 52\right)\cdot 73^{12} + \left(35 a + 8\right)\cdot 73^{13} + \left(40 a + 42\right)\cdot 73^{14} + \left(41 a + 12\right)\cdot 73^{15} + \left(59 a + 24\right)\cdot 73^{16} +O\left(73^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 34 + 30\cdot 73 + 36\cdot 73^{2} + 53\cdot 73^{3} + 2\cdot 73^{4} + 7\cdot 73^{5} + 34\cdot 73^{6} + 28\cdot 73^{7} + 11\cdot 73^{8} + 3\cdot 73^{9} + 3\cdot 73^{10} + 73^{11} + 68\cdot 73^{12} + 34\cdot 73^{13} + 25\cdot 73^{14} + 66\cdot 73^{15} + 20\cdot 73^{16} +O\left(73^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 42 + \left(69 a + 34\right)\cdot 73 + \left(66 a + 31\right)\cdot 73^{2} + \left(57 a + 22\right)\cdot 73^{3} + \left(63 a + 8\right)\cdot 73^{4} + \left(a + 60\right)\cdot 73^{5} + \left(11 a + 18\right)\cdot 73^{6} + \left(13 a + 17\right)\cdot 73^{7} + \left(9 a + 17\right)\cdot 73^{8} + \left(62 a + 47\right)\cdot 73^{9} + \left(20 a + 11\right)\cdot 73^{10} + 13 a\cdot 73^{11} + \left(21 a + 2\right)\cdot 73^{12} + \left(37 a + 64\right)\cdot 73^{13} + \left(32 a + 54\right)\cdot 73^{14} + \left(31 a + 23\right)\cdot 73^{15} + \left(13 a + 15\right)\cdot 73^{16} +O\left(73^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2)(5,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(1,6)(3,4)$$-1$
$6$$2$$(1,2)(5,6)$$1$
$6$$2$$(1,2)(3,4)(5,6)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,6,4)$$1$
$6$$4$$(1,3,6,4)(2,5)$$-1$
$8$$6$$(1,2,3,6,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.