Properties

Label 3.7e2_97e2.4t4.2
Dimension 3
Group $A_4$
Conductor $ 7^{2} \cdot 97^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$461041= 7^{2} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 24 x^{2} + 19 x + 117 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 174\cdot 179 + 136\cdot 179^{2} + 155\cdot 179^{3} + 113\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 104\cdot 179 + 43\cdot 179^{2} + 101\cdot 179^{3} + 154\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 154\cdot 179 + 110\cdot 179^{2} + 7\cdot 179^{3} + 143\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 112 + 104\cdot 179 + 66\cdot 179^{2} + 93\cdot 179^{3} + 125\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$4$ $3$ $(1,2,3)$ $0$
$4$ $3$ $(1,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.