Properties

Label 3.7e2_97.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 97 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$4753= 7^{2} \cdot 97 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 7 x^{4} - 9 x^{3} + 7 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 43 + 25\cdot 43^{2} + 26\cdot 43^{4} + 37\cdot 43^{5} + 23\cdot 43^{6} + 22\cdot 43^{7} + 5\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 2 + \left(27 a + 6\right)\cdot 43 + \left(6 a + 32\right)\cdot 43^{2} + \left(21 a + 35\right)\cdot 43^{3} + \left(18 a + 22\right)\cdot 43^{4} + \left(19 a + 42\right)\cdot 43^{5} + \left(19 a + 42\right)\cdot 43^{6} + \left(41 a + 31\right)\cdot 43^{7} + \left(14 a + 34\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 12 + \left(30 a + 16\right)\cdot 43 + \left(12 a + 30\right)\cdot 43^{2} + \left(4 a + 25\right)\cdot 43^{3} + \left(9 a + 40\right)\cdot 43^{4} + \left(34 a + 8\right)\cdot 43^{5} + \left(38 a + 19\right)\cdot 43^{6} + \left(22 a + 29\right)\cdot 43^{7} + \left(24 a + 20\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 42 + \left(15 a + 36\right)\cdot 43 + \left(36 a + 10\right)\cdot 43^{2} + \left(21 a + 7\right)\cdot 43^{3} + \left(24 a + 20\right)\cdot 43^{4} + 23 a\cdot 43^{5} + 23 a\cdot 43^{6} + \left(a + 11\right)\cdot 43^{7} + \left(28 a + 8\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 17 + 41\cdot 43 + 17\cdot 43^{2} + 42\cdot 43^{3} + 16\cdot 43^{4} + 5\cdot 43^{5} + 19\cdot 43^{6} + 20\cdot 43^{7} + 37\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 32 + \left(12 a + 26\right)\cdot 43 + \left(30 a + 12\right)\cdot 43^{2} + \left(38 a + 17\right)\cdot 43^{3} + \left(33 a + 2\right)\cdot 43^{4} + \left(8 a + 34\right)\cdot 43^{5} + \left(4 a + 23\right)\cdot 43^{6} + \left(20 a + 13\right)\cdot 43^{7} + \left(18 a + 22\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,5)$
$(3,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,4)$ $-1$
$4$ $3$ $(1,3,2)(4,5,6)$ $0$
$4$ $3$ $(1,2,3)(4,6,5)$ $0$
$4$ $6$ $(1,6,4,5,3,2)$ $0$
$4$ $6$ $(1,2,3,5,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.