Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 18 + \left(13 a + 25\right)\cdot 29 + \left(22 a + 22\right)\cdot 29^{2} + \left(3 a + 8\right)\cdot 29^{3} + 23 a\cdot 29^{4} + \left(4 a + 13\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 + 10\cdot 29 + 26\cdot 29^{2} + 22\cdot 29^{3} + 26\cdot 29^{4} + 24\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ a + 16 + \left(25 a + 23\right)\cdot 29 + \left(23 a + 18\right)\cdot 29^{2} + \left(6 a + 23\right)\cdot 29^{3} + \left(12 a + 2\right)\cdot 29^{4} + \left(15 a + 8\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 + 3\cdot 29 + 16\cdot 29^{2} + 21\cdot 29^{3} + 3\cdot 29^{4} + 12\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 a + 1 + \left(15 a + 21\right)\cdot 29 + \left(6 a + 5\right)\cdot 29^{2} + \left(25 a + 5\right)\cdot 29^{3} + \left(5 a + 25\right)\cdot 29^{4} + \left(24 a + 13\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 28 a + 21 + \left(3 a + 2\right)\cdot 29 + \left(5 a + 26\right)\cdot 29^{2} + \left(22 a + 4\right)\cdot 29^{3} + \left(16 a + 28\right)\cdot 29^{4} + \left(13 a + 14\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,4)$ |
| $(1,5)$ |
| $(3,6)$ |
| $(1,3,2)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $2$ | $(1,5)(2,4)(3,6)$ | $-3$ |
| $3$ | $2$ | $(1,5)$ | $1$ |
| $3$ | $2$ | $(1,5)(2,4)$ | $-1$ |
| $4$ | $3$ | $(1,3,2)(4,5,6)$ | $0$ |
| $4$ | $3$ | $(1,2,3)(4,6,5)$ | $0$ |
| $4$ | $6$ | $(1,6,4,5,3,2)$ | $0$ |
| $4$ | $6$ | $(1,2,3,5,4,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.