Properties

Label 3.7e2_47e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 7^{2} \cdot 47^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$108241= 7^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{2} - 3 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 359 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 92 + 114\cdot 359 + 330\cdot 359^{2} + 41\cdot 359^{3} + 294\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 145 + 128\cdot 359 + 341\cdot 359^{2} + 213\cdot 359^{3} + 110\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 152 + 154\cdot 359 + 96\cdot 359^{2} + 110\cdot 359^{3} + 56\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 329 + 320\cdot 359 + 308\cdot 359^{2} + 351\cdot 359^{3} + 256\cdot 359^{4} +O\left(359^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.