Properties

Label 3.7e2_419.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 419 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$20531= 7^{2} \cdot 419 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 8 x^{3} - 7 x^{2} - 7 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 11 + 10\cdot 13 + \left(5 a + 6\right)\cdot 13^{2} + \left(10 a + 6\right)\cdot 13^{3} + \left(3 a + 2\right)\cdot 13^{4} + \left(8 a + 9\right)\cdot 13^{5} + \left(8 a + 7\right)\cdot 13^{6} + \left(12 a + 12\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ a + 9 + \left(7 a + 3\right)\cdot 13 + \left(4 a + 3\right)\cdot 13^{2} + \left(6 a + 5\right)\cdot 13^{3} + \left(2 a + 9\right)\cdot 13^{4} + \left(a + 6\right)\cdot 13^{5} + \left(8 a + 9\right)\cdot 13^{6} + \left(10 a + 1\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 8 + 4\cdot 13 + 7\cdot 13^{3} + 13^{4} + 3\cdot 13^{5} + 12\cdot 13^{6} + 11\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 5 + \left(12 a + 4\right)\cdot 13 + \left(7 a + 11\right)\cdot 13^{2} + \left(2 a + 11\right)\cdot 13^{3} + \left(9 a + 8\right)\cdot 13^{4} + 4 a\cdot 13^{5} + \left(4 a + 8\right)\cdot 13^{6} + 3\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 10 + \left(5 a + 9\right)\cdot 13 + 8 a\cdot 13^{2} + \left(6 a + 7\right)\cdot 13^{3} + \left(10 a + 5\right)\cdot 13^{4} + \left(11 a + 5\right)\cdot 13^{5} + \left(4 a + 3\right)\cdot 13^{6} + \left(2 a + 4\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 10 + 5\cdot 13 + 3\cdot 13^{2} + 13^{3} + 11\cdot 13^{4} + 11\cdot 13^{6} + 4\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,5)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$4$ $3$ $(1,2,3)(4,5,6)$ $0$
$4$ $3$ $(1,3,2)(4,6,5)$ $0$
$4$ $6$ $(1,2,3,4,5,6)$ $0$
$4$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.