Properties

Label 3.7e2_41.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$2009= 7^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 5 x^{3} + x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 16 + \left(14 a + 20\right)\cdot 43 + \left(22 a + 17\right)\cdot 43^{2} + \left(9 a + 6\right)\cdot 43^{3} + \left(37 a + 29\right)\cdot 43^{4} + \left(8 a + 35\right)\cdot 43^{5} + \left(27 a + 33\right)\cdot 43^{6} + \left(14 a + 27\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 11 + \left(26 a + 19\right)\cdot 43 + \left(10 a + 29\right)\cdot 43^{2} + \left(4 a + 24\right)\cdot 43^{3} + \left(29 a + 30\right)\cdot 43^{4} + \left(12 a + 29\right)\cdot 43^{5} + \left(5 a + 3\right)\cdot 43^{6} + \left(10 a + 19\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 33 + \left(16 a + 23\right)\cdot 43 + \left(32 a + 13\right)\cdot 43^{2} + \left(38 a + 18\right)\cdot 43^{3} + \left(13 a + 12\right)\cdot 43^{4} + \left(30 a + 13\right)\cdot 43^{5} + \left(37 a + 39\right)\cdot 43^{6} + \left(32 a + 23\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 13 + 16\cdot 43 + 24\cdot 43^{2} + 22\cdot 43^{3} + 17\cdot 43^{4} + 24\cdot 43^{5} + 28\cdot 43^{6} + 10\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 28 + \left(28 a + 22\right)\cdot 43 + \left(20 a + 25\right)\cdot 43^{2} + \left(33 a + 36\right)\cdot 43^{3} + \left(5 a + 13\right)\cdot 43^{4} + \left(34 a + 7\right)\cdot 43^{5} + \left(15 a + 9\right)\cdot 43^{6} + \left(28 a + 15\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 31 + 26\cdot 43 + 18\cdot 43^{2} + 20\cdot 43^{3} + 25\cdot 43^{4} + 18\cdot 43^{5} + 14\cdot 43^{6} + 32\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,5)$
$(2,3)$
$(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,3)$ $-1$
$4$ $3$ $(1,4,2)(3,5,6)$ $0$
$4$ $3$ $(1,2,4)(3,6,5)$ $0$
$4$ $6$ $(1,6,3,5,4,2)$ $0$
$4$ $6$ $(1,2,4,5,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.