Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 a + 23 + \left(17 a + 38\right)\cdot 41 + \left(36 a + 13\right)\cdot 41^{2} + \left(21 a + 19\right)\cdot 41^{3} + \left(11 a + 8\right)\cdot 41^{4} + \left(26 a + 8\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 a + 33 + \left(23 a + 32\right)\cdot 41 + \left(4 a + 23\right)\cdot 41^{2} + \left(19 a + 7\right)\cdot 41^{3} + \left(29 a + 21\right)\cdot 41^{4} + \left(14 a + 34\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 39 a + 39 + \left(3 a + 25\right)\cdot 41 + \left(23 a + 2\right)\cdot 41^{2} + \left(37 a + 18\right)\cdot 41^{3} + \left(33 a + 9\right)\cdot 41^{4} + \left(17 a + 17\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 23 + 31\cdot 41 + 7\cdot 41^{2} + 36\cdot 41^{3} + 25\cdot 41^{4} + 18\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 + 36\cdot 41 + 6\cdot 41^{2} + 16\cdot 41^{3} + 25\cdot 41^{4} + 7\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a + 33 + \left(37 a + 39\right)\cdot 41 + \left(17 a + 26\right)\cdot 41^{2} + \left(3 a + 25\right)\cdot 41^{3} + \left(7 a + 32\right)\cdot 41^{4} + \left(23 a + 36\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(4,5)$ |
| $(3,6)$ |
| $(1,4,3)(2,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,2)(3,6)(4,5)$ |
$-3$ |
| $3$ |
$2$ |
$(3,6)$ |
$1$ |
| $3$ |
$2$ |
$(1,2)(3,6)$ |
$-1$ |
| $4$ |
$3$ |
$(1,4,3)(2,5,6)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,4)(2,6,5)$ |
$0$ |
| $4$ |
$6$ |
$(1,4,3,2,5,6)$ |
$0$ |
| $4$ |
$6$ |
$(1,6,5,2,3,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.