Properties

Label 3.7e2_337e2.9t7.3c2
Dimension 3
Group $C_3^2:C_3$
Conductor $ 7^{2} \cdot 337^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$5564881= 7^{2} \cdot 337^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 53 x^{7} + 207 x^{6} + 613 x^{5} - 3243 x^{4} - 22 x^{3} + 13140 x^{2} - 13923 x + 2619 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{2} + 5 a + 7 + \left(a^{2} + 6 a + 10\right)\cdot 13 + \left(11 a^{2} + 4 a + 1\right)\cdot 13^{2} + \left(10 a^{2} + 3 a + 10\right)\cdot 13^{3} + \left(4 a^{2} + 7 a + 10\right)\cdot 13^{4} + \left(7 a^{2} + 9\right)\cdot 13^{5} + 12 a\cdot 13^{6} + \left(9 a^{2} + 7 a + 12\right)\cdot 13^{7} + \left(6 a^{2} + 6 a + 8\right)\cdot 13^{8} + \left(4 a^{2} + 1\right)\cdot 13^{9} + \left(11 a^{2} + 5 a + 2\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 4 a + 2 + \left(6 a^{2} + a + 9\right)\cdot 13 + \left(12 a^{2} + a + 3\right)\cdot 13^{2} + \left(8 a^{2} + 4 a + 3\right)\cdot 13^{3} + \left(3 a^{2} + 3 a + 9\right)\cdot 13^{4} + \left(5 a + 4\right)\cdot 13^{5} + \left(3 a^{2} + 4 a + 8\right)\cdot 13^{6} + \left(a^{2} + 10 a + 1\right)\cdot 13^{7} + \left(2 a^{2} + 3 a + 7\right)\cdot 13^{8} + \left(7 a^{2} + a + 9\right)\cdot 13^{9} + \left(5 a^{2} + 3 a + 11\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 6 + 11\cdot 13 + 2\cdot 13^{2} + 11\cdot 13^{3} + 7\cdot 13^{4} + 3\cdot 13^{5} + 10\cdot 13^{6} + 9\cdot 13^{7} + 3\cdot 13^{8} + 9\cdot 13^{9} + 3\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 12 + 11\cdot 13 + 9\cdot 13^{2} + 6\cdot 13^{4} + 6\cdot 13^{5} + 6\cdot 13^{6} + 10\cdot 13^{7} + 7\cdot 13^{8} + 2\cdot 13^{9} +O\left(13^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 12 a + 4 + \left(6 a + 9\right)\cdot 13 + \left(a^{2} + 6 a + 5\right)\cdot 13^{2} + \left(8 a^{2} + 6\right)\cdot 13^{3} + \left(4 a^{2} + 2 a + 10\right)\cdot 13^{4} + \left(9 a^{2} + 4 a + 3\right)\cdot 13^{5} + \left(7 a^{2} + 10 a + 10\right)\cdot 13^{6} + \left(3 a^{2} + 11 a + 4\right)\cdot 13^{7} + \left(9 a^{2} + 7 a + 12\right)\cdot 13^{8} + \left(11 a^{2} + 3 a + 6\right)\cdot 13^{9} + \left(8 a^{2} + 3 a + 7\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 9 + 2\cdot 13 + 13^{3} + 12\cdot 13^{4} + 2\cdot 13^{5} + 9\cdot 13^{6} + 5\cdot 13^{7} + 13^{8} + 13^{9} + 9\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 12 a^{2} + 12 + \left(6 a^{2} + 2 a + 4\right)\cdot 13 + \left(7 a^{2} + 10 a + 1\right)\cdot 13^{2} + \left(3 a^{2} + 4 a + 9\right)\cdot 13^{3} + \left(5 a^{2} + 10 a + 2\right)\cdot 13^{4} + \left(12 a^{2} + 3 a + 12\right)\cdot 13^{5} + \left(4 a^{2} + 2 a + 10\right)\cdot 13^{6} + \left(8 a^{2} + 10 a + 6\right)\cdot 13^{7} + \left(7 a^{2} + 4 a + 1\right)\cdot 13^{8} + \left(9 a^{2} + 4 a + 4\right)\cdot 13^{9} + \left(6 a^{2} + 2 a\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{2} + 4 a + 5 + \left(4 a^{2} + 5 a + 6\right)\cdot 13 + \left(2 a^{2} + 7 a + 7\right)\cdot 13^{2} + \left(6 a^{2} + 5 a + 12\right)\cdot 13^{3} + \left(4 a^{2} + 2 a + 5\right)\cdot 13^{4} + \left(5 a^{2} + 7 a + 11\right)\cdot 13^{5} + \left(9 a^{2} + 9 a + 3\right)\cdot 13^{6} + \left(2 a^{2} + 7 a + 12\right)\cdot 13^{7} + \left(4 a^{2} + 2 a + 9\right)\cdot 13^{8} + \left(a^{2} + 11 a + 1\right)\cdot 13^{9} + \left(9 a^{2} + 4 a + 12\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 8 a^{2} + a + 11 + \left(5 a^{2} + 4 a + 11\right)\cdot 13 + \left(4 a^{2} + 9 a + 5\right)\cdot 13^{2} + \left(a^{2} + 7 a + 10\right)\cdot 13^{3} + \left(3 a^{2} + 12\right)\cdot 13^{4} + \left(4 a^{2} + 5 a + 9\right)\cdot 13^{5} + 4\cdot 13^{6} + \left(a^{2} + 4 a + 1\right)\cdot 13^{7} + \left(9 a^{2} + 12\right)\cdot 13^{8} + \left(4 a^{2} + 5 a + 1\right)\cdot 13^{9} + \left(10 a^{2} + 7 a + 5\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,3)(2,9,6)(4,8,7)$
$(1,8,2)(3,6,4)$
$(3,6,4)(5,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,8,2)(3,4,6)(5,7,9)$$-3 \zeta_{3} - 3$
$1$$3$$(1,2,8)(3,6,4)(5,9,7)$$3 \zeta_{3}$
$3$$3$$(1,5,3)(2,9,6)(4,8,7)$$0$
$3$$3$$(1,3,5)(2,6,9)(4,7,8)$$0$
$3$$3$$(1,8,2)(3,6,4)$$0$
$3$$3$$(1,2,8)(3,4,6)$$0$
$3$$3$$(1,7,3)(2,5,6)(4,8,9)$$0$
$3$$3$$(1,3,7)(2,6,5)(4,9,8)$$0$
$3$$3$$(1,9,3)(2,7,6)(4,8,5)$$0$
$3$$3$$(1,3,9)(2,6,7)(4,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.