Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 61\cdot 83 + 59\cdot 83^{2} + 25\cdot 83^{3} +O\left(83^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 + 42\cdot 83 + 19\cdot 83^{2} + 33\cdot 83^{3} + 56\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 61 + 80\cdot 83 + 12\cdot 83^{2} + 2\cdot 83^{3} + 8\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 71 + 64\cdot 83 + 73\cdot 83^{2} + 21\cdot 83^{3} + 18\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.