Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 a + 10 + \left(5 a + 8\right)\cdot 29 + \left(28 a + 11\right)\cdot 29^{2} + \left(10 a + 1\right)\cdot 29^{3} + \left(2 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 a + 26 + \left(6 a + 25\right)\cdot 29 + \left(18 a + 15\right)\cdot 29^{2} + \left(6 a + 14\right)\cdot 29^{3} + \left(22 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 + 13\cdot 29 + 27\cdot 29^{2} + 19\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 + 17\cdot 29^{2} + 22\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a + 14 + \left(22 a + 14\right)\cdot 29 + \left(10 a + 13\right)\cdot 29^{2} + 22 a\cdot 29^{3} + \left(6 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a + 12 + \left(23 a + 23\right)\cdot 29 + 29^{2} + \left(18 a + 28\right)\cdot 29^{3} + \left(26 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,5)$ |
| $(1,6)$ |
| $(1,2,3)(4,6,5)$ |
| $(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-3$ |
| $3$ | $2$ | $(3,4)$ | $1$ |
| $3$ | $2$ | $(1,6)(3,4)$ | $-1$ |
| $4$ | $3$ | $(1,2,3)(4,6,5)$ | $0$ |
| $4$ | $3$ | $(1,3,2)(4,5,6)$ | $0$ |
| $4$ | $6$ | $(1,2,3,6,5,4)$ | $0$ |
| $4$ | $6$ | $(1,4,5,6,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.