Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 22 a + 7 + \left(14 a + 16\right)\cdot 29 + \left(10 a + 3\right)\cdot 29^{2} + \left(14 a + 27\right)\cdot 29^{3} + \left(26 a + 28\right)\cdot 29^{4} + \left(2 a + 2\right)\cdot 29^{5} + \left(3 a + 4\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 14 + \left(15 a + 13\right)\cdot 29 + \left(18 a + 11\right)\cdot 29^{2} + \left(15 a + 21\right)\cdot 29^{3} + \left(18 a + 5\right)\cdot 29^{4} + \left(3 a + 4\right)\cdot 29^{5} + \left(24 a + 11\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a + 1 + \left(14 a + 10\right)\cdot 29 + \left(18 a + 12\right)\cdot 29^{2} + \left(14 a + 1\right)\cdot 29^{3} + \left(2 a + 2\right)\cdot 29^{4} + \left(26 a + 20\right)\cdot 29^{5} + \left(25 a + 16\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 28 a + 19 + 13 a\cdot 29 + \left(10 a + 2\right)\cdot 29^{2} + \left(13 a + 23\right)\cdot 29^{3} + \left(10 a + 24\right)\cdot 29^{4} + \left(25 a + 3\right)\cdot 29^{5} + \left(4 a + 12\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 + 3\cdot 29 + 4\cdot 29^{2} + 21\cdot 29^{3} + 10\cdot 29^{4} + 24\cdot 29^{5} + 9\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 + 14\cdot 29 + 24\cdot 29^{2} + 21\cdot 29^{3} + 14\cdot 29^{4} + 2\cdot 29^{5} + 4\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,4)$ |
| $(1,3)$ |
| $(5,6)$ |
| $(1,2,5)(3,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,3)(2,4)(5,6)$ |
$-3$ |
| $3$ |
$2$ |
$(1,3)$ |
$1$ |
| $3$ |
$2$ |
$(1,3)(2,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,5)(3,4,6)$ |
$0$ |
| $4$ |
$3$ |
$(1,5,2)(3,6,4)$ |
$0$ |
| $4$ |
$6$ |
$(1,4,6,3,2,5)$ |
$0$ |
| $4$ |
$6$ |
$(1,5,2,3,6,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.