Properties

Label 3.7e2_211.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 211 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$10339= 7^{2} \cdot 211 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 4 x^{3} - 6 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd
Determinant: 1.211.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 38 + 6\cdot 43 + 42\cdot 43^{3} + 39\cdot 43^{4} + 32\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 40 + 24\cdot 43 + 43^{2} + 21\cdot 43^{3} + 29\cdot 43^{4} + 15\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 32 + \left(39 a + 13\right)\cdot 43 + \left(19 a + 12\right)\cdot 43^{2} + 12\cdot 43^{3} + \left(14 a + 1\right)\cdot 43^{4} + \left(7 a + 27\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 39 + \left(3 a + 2\right)\cdot 43 + \left(23 a + 36\right)\cdot 43^{2} + \left(42 a + 35\right)\cdot 43^{3} + \left(28 a + 14\right)\cdot 43^{4} + \left(35 a + 20\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 24 a + \left(33 a + 14\right)\cdot 43 + 25 a\cdot 43^{2} + \left(a + 21\right)\cdot 43^{3} + \left(37 a + 25\right)\cdot 43^{4} + \left(a + 12\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 24 + \left(9 a + 23\right)\cdot 43 + \left(17 a + 35\right)\cdot 43^{2} + \left(41 a + 39\right)\cdot 43^{3} + \left(5 a + 17\right)\cdot 43^{4} + \left(41 a + 20\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3)(2,6,4)$
$(1,2)$
$(5,6)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(1,2)$$1$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,5,3)(2,6,4)$$0$
$4$$3$$(1,3,5)(2,4,6)$$0$
$4$$6$$(1,6,4,2,5,3)$$0$
$4$$6$$(1,3,5,2,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.