Properties

Label 3.7e2_19e2.42t37.2c2
Dimension 3
Group $\GL(3,2)$
Conductor $ 7^{2} \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$17689= 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - 6 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 6 a^{2} + 3 + \left(7 a^{2} + a + 4\right)\cdot 11 + \left(10 a^{2} + 8 a + 4\right)\cdot 11^{2} + \left(8 a^{2} + a + 9\right)\cdot 11^{3} + \left(a^{2} + 6 a\right)\cdot 11^{4} + \left(9 a^{2} + 7 a + 10\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 7 a + 1 + 6 a\cdot 11 + \left(9 a^{2} + 9 a + 10\right)\cdot 11^{2} + \left(6 a^{2} + 6\right)\cdot 11^{3} + \left(8 a + 5\right)\cdot 11^{4} + \left(4 a^{2} + 2 a + 4\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 4 a + 10 + \left(4 a^{2} + 8 a + 5\right)\cdot 11 + \left(2 a^{2} + 5 a + 8\right)\cdot 11^{2} + \left(a^{2} + 6\right)\cdot 11^{3} + \left(4 a^{2} + 6\right)\cdot 11^{4} + \left(3 a + 10\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 10 + \left(6 a^{2} + 7 a + 4\right)\cdot 11 + \left(10 a^{2} + 6 a + 8\right)\cdot 11^{2} + \left(2 a^{2} + 9 a + 1\right)\cdot 11^{3} + \left(6 a^{2} + 2 a + 2\right)\cdot 11^{4} + \left(6 a^{2} + 5 a + 4\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 7 a + 3 + \left(a^{2} + 6 a + 7\right)\cdot 11 + \left(5 a^{2} + 2 a\right)\cdot 11^{2} + \left(4 a^{2} + a + 7\right)\cdot 11^{3} + \left(a^{2} + a + 7\right)\cdot 11^{4} + \left(2 a^{2} + 8 a\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 6 + 6\cdot 11 + 2\cdot 11^{2} + 3\cdot 11^{3} + 11^{4} + 9\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{2} + 4 a + 1 + \left(a^{2} + 3 a + 4\right)\cdot 11 + \left(6 a^{2} + 9\right)\cdot 11^{2} + \left(8 a^{2} + 8 a + 8\right)\cdot 11^{3} + \left(7 a^{2} + 3 a + 8\right)\cdot 11^{4} + \left(10 a^{2} + 6 a + 4\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6,7,2)(3,4)$
$(2,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$21$$2$$(1,7)(2,6)$$-1$
$56$$3$$(1,7,5)(2,6,3)$$0$
$42$$4$$(1,6,7,2)(3,4)$$1$
$24$$7$$(1,6,4,3,7,5,2)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$24$$7$$(1,3,2,4,5,6,7)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.