Properties

Label 3.7e2_199e2.18t86.2
Dimension 3
Group $C_3 \wr S_3 $
Conductor $ 7^{2} \cdot 199^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3 \wr S_3 $
Conductor:$1940449= 7^{2} \cdot 199^{2} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 6 x^{7} - 7 x^{6} + 10 x^{5} - 14 x^{4} + 15 x^{3} - 10 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T86
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 23.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 17 + \left(11 a^{2} + 10 a + 5\right)\cdot 29 + \left(9 a^{2} + 22 a + 5\right)\cdot 29^{2} + \left(24 a^{2} + 18 a + 22\right)\cdot 29^{3} + \left(8 a^{2} + 24 a + 21\right)\cdot 29^{4} + \left(17 a^{2} + 18 a + 10\right)\cdot 29^{5} + \left(24 a^{2} + a + 2\right)\cdot 29^{6} + \left(10 a^{2} + 22 a + 21\right)\cdot 29^{7} + \left(25 a^{2} + 3 a + 13\right)\cdot 29^{8} + \left(2 a^{2} + 10 a + 20\right)\cdot 29^{9} + \left(14 a^{2} + a + 2\right)\cdot 29^{10} + \left(5 a^{2} + 2 a + 25\right)\cdot 29^{11} + \left(5 a^{2} + 16 a + 11\right)\cdot 29^{12} + \left(21 a^{2} + 17 a + 15\right)\cdot 29^{13} + \left(13 a^{2} + 27 a + 28\right)\cdot 29^{14} + \left(2 a^{2} + 12 a + 26\right)\cdot 29^{15} + \left(3 a^{2} + 13 a + 11\right)\cdot 29^{16} + \left(25 a^{2} + 26 a + 28\right)\cdot 29^{17} + \left(11 a^{2} + 4 a + 5\right)\cdot 29^{18} + \left(a^{2} + 23 a + 4\right)\cdot 29^{19} + \left(10 a^{2} + 17 a + 14\right)\cdot 29^{20} + \left(4 a^{2} + 9 a + 1\right)\cdot 29^{21} + \left(11 a^{2} + 10 a + 25\right)\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 2 }$ $=$ $ 28 a^{2} + 26 a + 24 + \left(16 a^{2} + 24 a + 3\right)\cdot 29 + \left(18 a^{2} + 16 a + 27\right)\cdot 29^{2} + \left(24 a^{2} + 4 a + 12\right)\cdot 29^{3} + \left(23 a^{2} + 11 a + 22\right)\cdot 29^{4} + \left(3 a^{2} + 21\right)\cdot 29^{5} + \left(25 a^{2} + 3 a + 12\right)\cdot 29^{6} + \left(22 a^{2} + 18 a + 27\right)\cdot 29^{7} + \left(18 a^{2} + 8 a + 4\right)\cdot 29^{8} + \left(13 a^{2} + 7 a + 25\right)\cdot 29^{9} + \left(22 a + 3\right)\cdot 29^{10} + \left(28 a^{2} + 9 a + 26\right)\cdot 29^{11} + \left(12 a^{2} + 7 a + 2\right)\cdot 29^{12} + \left(2 a^{2} + 16 a\right)\cdot 29^{13} + \left(18 a^{2} + 22 a + 15\right)\cdot 29^{14} + \left(15 a + 24\right)\cdot 29^{15} + \left(22 a^{2} + 26 a + 17\right)\cdot 29^{16} + \left(26 a^{2} + 16 a + 1\right)\cdot 29^{17} + \left(11 a^{2} + a + 6\right)\cdot 29^{18} + \left(13 a^{2} + 2 a + 20\right)\cdot 29^{19} + \left(27 a^{2} + 19 a + 27\right)\cdot 29^{20} + \left(13 a^{2} + 28 a + 23\right)\cdot 29^{21} + \left(19 a^{2} + 12 a + 16\right)\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 3 }$ $=$ $ 22 a^{2} + 20 a + 23 + \left(3 a^{2} + 4 a + 12\right)\cdot 29 + \left(5 a^{2} + 8 a + 14\right)\cdot 29^{2} + \left(a^{2} + 6 a + 27\right)\cdot 29^{3} + \left(9 a^{2} + 19 a + 28\right)\cdot 29^{4} + \left(25 a^{2} + 3 a + 2\right)\cdot 29^{5} + \left(7 a^{2} + 27 a + 5\right)\cdot 29^{6} + \left(27 a^{2} + 14 a + 5\right)\cdot 29^{7} + \left(11 a^{2} + 10 a + 11\right)\cdot 29^{8} + \left(14 a^{2} + 21 a + 21\right)\cdot 29^{9} + \left(15 a^{2} + 26 a + 28\right)\cdot 29^{10} + \left(3 a^{2} + 24 a + 22\right)\cdot 29^{11} + \left(6 a^{2} + 25 a + 23\right)\cdot 29^{12} + \left(19 a^{2} + 8 a + 18\right)\cdot 29^{13} + \left(9 a^{2} + 9 a + 3\right)\cdot 29^{14} + \left(20 a^{2} + 6 a + 4\right)\cdot 29^{15} + \left(25 a^{2} + 2 a + 11\right)\cdot 29^{16} + \left(20 a^{2} + 20 a + 3\right)\cdot 29^{17} + \left(23 a^{2} + 14 a + 20\right)\cdot 29^{18} + \left(5 a^{2} + 26 a + 6\right)\cdot 29^{19} + \left(21 a^{2} + 28 a + 12\right)\cdot 29^{20} + \left(a^{2} + 27 a + 14\right)\cdot 29^{21} + \left(14 a^{2} + 5 a + 16\right)\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 4 }$ $=$ $ 7 + 23\cdot 29 + 2\cdot 29^{2} + 16\cdot 29^{3} + 9\cdot 29^{4} + 16\cdot 29^{5} + 18\cdot 29^{6} + 29^{7} + 4\cdot 29^{8} + 13\cdot 29^{9} + 5\cdot 29^{10} + 22\cdot 29^{11} + 27\cdot 29^{12} + 29^{13} + 26\cdot 29^{14} + 19\cdot 29^{15} + 17\cdot 29^{16} + 21\cdot 29^{17} + 3\cdot 29^{18} + 27\cdot 29^{19} + 5\cdot 29^{20} + 25\cdot 29^{21} + 17\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 6 + \left(a^{2} + 23 a + 21\right)\cdot 29 + \left(a^{2} + 18 a + 3\right)\cdot 29^{2} + \left(9 a^{2} + 5 a + 21\right)\cdot 29^{3} + \left(25 a^{2} + 22 a + 14\right)\cdot 29^{4} + \left(7 a^{2} + 9 a + 17\right)\cdot 29^{5} + \left(8 a^{2} + 24 a + 9\right)\cdot 29^{6} + \left(24 a^{2} + 17 a\right)\cdot 29^{7} + \left(13 a^{2} + 16 a + 8\right)\cdot 29^{8} + \left(12 a^{2} + 11 a + 4\right)\cdot 29^{9} + \left(14 a^{2} + 5 a + 3\right)\cdot 29^{10} + \left(24 a^{2} + 17 a + 2\right)\cdot 29^{11} + \left(10 a^{2} + 5 a\right)\cdot 29^{12} + \left(5 a^{2} + 24 a + 4\right)\cdot 29^{13} + \left(26 a^{2} + 7 a + 16\right)\cdot 29^{14} + \left(25 a^{2} + 19\right)\cdot 29^{15} + \left(3 a^{2} + 18 a + 22\right)\cdot 29^{16} + \left(6 a^{2} + 14 a + 12\right)\cdot 29^{17} + \left(5 a^{2} + 22 a + 16\right)\cdot 29^{18} + \left(14 a^{2} + 3 a + 11\right)\cdot 29^{19} + \left(20 a^{2} + 21 a + 18\right)\cdot 29^{20} + \left(10 a^{2} + 19 a + 19\right)\cdot 29^{21} + \left(27 a^{2} + 5 a + 17\right)\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 6 }$ $=$ $ 17 + 22\cdot 29 + 22\cdot 29^{2} + 8\cdot 29^{3} + 25\cdot 29^{4} + 6\cdot 29^{5} + 26\cdot 29^{6} + 5\cdot 29^{7} + 29^{8} + 25\cdot 29^{9} + 19\cdot 29^{10} + 13\cdot 29^{11} + 29^{12} + 23\cdot 29^{13} + 15\cdot 29^{14} + 26\cdot 29^{15} + 2\cdot 29^{16} + 11\cdot 29^{17} + 26\cdot 29^{18} + 4\cdot 29^{19} + 8\cdot 29^{20} + 6\cdot 29^{21} + 26\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{2} + 17 a + 17 + \left(10 a^{2} + 16 a + 11\right)\cdot 29 + \left(19 a^{2} + 6 a + 4\right)\cdot 29^{2} + \left(8 a^{2} + 3 a + 18\right)\cdot 29^{3} + \left(20 a^{2} + 23 a + 24\right)\cdot 29^{4} + \left(26 a^{2} + 19 a + 4\right)\cdot 29^{5} + \left(27 a^{2} + 16 a + 22\right)\cdot 29^{6} + \left(27 a^{2} + 8 a + 15\right)\cdot 29^{7} + \left(5 a^{2} + 22\right)\cdot 29^{8} + \left(18 a^{2} + 20 a + 16\right)\cdot 29^{9} + \left(27 a^{2} + 14 a + 25\right)\cdot 29^{10} + \left(4 a^{2} + 25 a + 24\right)\cdot 29^{11} + \left(11 a^{2} + 10 a + 20\right)\cdot 29^{12} + \left(27 a^{2} + 26 a\right)\cdot 29^{13} + \left(25 a^{2} + 20 a + 6\right)\cdot 29^{14} + \left(25 a^{2} + 19 a + 21\right)\cdot 29^{15} + \left(25 a^{2} + 27 a + 1\right)\cdot 29^{16} + \left(4 a^{2} + 24 a + 11\right)\cdot 29^{17} + \left(28 a^{2} + 27 a + 16\right)\cdot 29^{18} + \left(10 a^{2} + 10 a + 13\right)\cdot 29^{19} + \left(22 a^{2} + 7 a + 23\right)\cdot 29^{20} + \left(13 a^{2} + 6 a + 20\right)\cdot 29^{21} + \left(9 a^{2} + 7 a\right)\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 8 }$ $=$ $ 10 + 16\cdot 29 + 2\cdot 29^{2} + 15\cdot 29^{3} + 19\cdot 29^{5} + 4\cdot 29^{6} + 8\cdot 29^{7} + 11\cdot 29^{8} + 21\cdot 29^{9} + 27\cdot 29^{10} + 25\cdot 29^{12} + 4\cdot 29^{13} + 13\cdot 29^{14} + 9\cdot 29^{15} + 25\cdot 29^{16} + 26\cdot 29^{17} + 4\cdot 29^{18} + 22\cdot 29^{19} + 2\cdot 29^{20} + 3\cdot 29^{21} + 19\cdot 29^{22} +O\left(29^{ 23 }\right)$
$r_{ 9 }$ $=$ $ 4 a^{2} + 21 a + 28 + \left(15 a^{2} + 7 a + 27\right)\cdot 29 + \left(4 a^{2} + 14 a + 3\right)\cdot 29^{2} + \left(19 a^{2} + 19 a + 3\right)\cdot 29^{3} + \left(28 a^{2} + 15 a + 26\right)\cdot 29^{4} + \left(5 a^{2} + 5 a + 15\right)\cdot 29^{5} + \left(22 a^{2} + 14 a + 14\right)\cdot 29^{6} + \left(2 a^{2} + 5 a + 1\right)\cdot 29^{7} + \left(11 a^{2} + 18 a + 10\right)\cdot 29^{8} + \left(25 a^{2} + 16 a + 26\right)\cdot 29^{9} + \left(14 a^{2} + 16 a + 27\right)\cdot 29^{10} + \left(20 a^{2} + 7 a + 6\right)\cdot 29^{11} + \left(11 a^{2} + 21 a + 2\right)\cdot 29^{12} + \left(11 a^{2} + 22 a + 18\right)\cdot 29^{13} + \left(22 a^{2} + 27 a + 20\right)\cdot 29^{14} + \left(11 a^{2} + 2 a + 21\right)\cdot 29^{15} + \left(6 a^{2} + 28 a + 4\right)\cdot 29^{16} + \left(3 a^{2} + 12 a + 28\right)\cdot 29^{17} + \left(6 a^{2} + 15 a + 15\right)\cdot 29^{18} + \left(12 a^{2} + 20 a + 5\right)\cdot 29^{19} + \left(14 a^{2} + 21 a + 3\right)\cdot 29^{20} + \left(13 a^{2} + 23 a + 1\right)\cdot 29^{21} + \left(5 a^{2} + 15 a + 5\right)\cdot 29^{22} +O\left(29^{ 23 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,2)(3,9,7)$
$(1,8)(2,6)(3,7,9)(4,5)$
$(3,9,7)(4,6,8)$
$(3,8,9,4,7,6)$
$(3,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$9$ $2$ $(1,8)(2,6)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,2,5)(3,7,9)(4,8,6)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$1$ $3$ $(1,5,2)(3,9,7)(4,6,8)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$3$ $3$ $(1,5,2)(3,9,7)$ $\zeta_{3} - 1$ $-\zeta_{3} - 2$
$3$ $3$ $(1,2,5)(3,7,9)$ $-\zeta_{3} - 2$ $\zeta_{3} - 1$
$3$ $3$ $(3,9,7)$ $2 \zeta_{3} + 1$ $-2 \zeta_{3} - 1$
$3$ $3$ $(3,7,9)$ $-2 \zeta_{3} - 1$ $2 \zeta_{3} + 1$
$3$ $3$ $(1,5,2)(3,7,9)(4,6,8)$ $-\zeta_{3} + 1$ $\zeta_{3} + 2$
$3$ $3$ $(1,2,5)(3,9,7)(4,8,6)$ $\zeta_{3} + 2$ $-\zeta_{3} + 1$
$6$ $3$ $(1,2,5)(4,6,8)$ $0$ $0$
$18$ $3$ $(1,9,8)(2,3,6)(4,5,7)$ $0$ $0$
$9$ $6$ $(1,8)(2,6)(3,7,9)(4,5)$ $-1$ $-1$
$9$ $6$ $(1,8)(2,6)(3,9,7)(4,5)$ $-1$ $-1$
$9$ $6$ $(1,4,5,6,2,8)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$9$ $6$ $(1,8,2,6,5,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$9$ $6$ $(1,6,2,4,5,8)(3,9,7)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$9$ $6$ $(1,8,5,4,2,6)(3,7,9)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$9$ $6$ $(1,5,2)(3,4,9,6,7,8)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$9$ $6$ $(1,2,5)(3,8,7,6,9,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$18$ $9$ $(1,3,4,5,9,6,2,7,8)$ $0$ $0$
$18$ $9$ $(1,4,9,2,8,3,5,6,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.