Properties

Label 3.7e2_17e2_23.4t5.1
Dimension 3
Group $S_4$
Conductor $ 7^{2} \cdot 17^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$325703= 7^{2} \cdot 17^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 8 x^{2} + 11 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 15\cdot 59 + 23\cdot 59^{2} + 38\cdot 59^{3} + 40\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 44\cdot 59 + 10\cdot 59^{2} + 41\cdot 59^{3} + 23\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 36\cdot 59 + 27\cdot 59^{2} + 30\cdot 59^{3} + 15\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 21\cdot 59 + 56\cdot 59^{2} + 7\cdot 59^{3} + 38\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.