Properties

Label 3.7e2_157.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 7^{2} \cdot 157 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7693= 7^{2} \cdot 157 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} + 3 x^{3} + 3 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 + 20\cdot 29 + 10\cdot 29^{2} + 15\cdot 29^{3} + 20\cdot 29^{4} + 7\cdot 29^{5} + 18\cdot 29^{6} + 12\cdot 29^{7} + 26\cdot 29^{8} + 7\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 21 + \left(12 a + 26\right)\cdot 29 + \left(18 a + 21\right)\cdot 29^{2} + \left(4 a + 25\right)\cdot 29^{3} + \left(10 a + 11\right)\cdot 29^{4} + 15 a\cdot 29^{5} + \left(28 a + 8\right)\cdot 29^{6} + \left(4 a + 24\right)\cdot 29^{7} + \left(15 a + 23\right)\cdot 29^{8} + \left(4 a + 5\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 19 + \left(16 a + 14\right)\cdot 29 + \left(10 a + 14\right)\cdot 29^{2} + \left(24 a + 1\right)\cdot 29^{3} + 18 a\cdot 29^{4} + \left(13 a + 9\right)\cdot 29^{5} + 19\cdot 29^{6} + \left(24 a + 20\right)\cdot 29^{7} + \left(13 a + 7\right)\cdot 29^{8} + \left(24 a + 13\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 17 + \left(25 a + 10\right)\cdot 29 + \left(13 a + 13\right)\cdot 29^{2} + \left(17 a + 26\right)\cdot 29^{3} + \left(19 a + 10\right)\cdot 29^{4} + 10\cdot 29^{5} + \left(5 a + 16\right)\cdot 29^{6} + \left(25 a + 14\right)\cdot 29^{7} + \left(2 a + 4\right)\cdot 29^{8} + \left(17 a + 28\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 14 + \left(3 a + 10\right)\cdot 29 + \left(15 a + 28\right)\cdot 29^{2} + \left(11 a + 12\right)\cdot 29^{3} + \left(9 a + 4\right)\cdot 29^{4} + \left(28 a + 23\right)\cdot 29^{5} + \left(23 a + 11\right)\cdot 29^{6} + \left(3 a + 19\right)\cdot 29^{7} + \left(26 a + 22\right)\cdot 29^{8} + \left(11 a + 23\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 23 + 3\cdot 29 + 27\cdot 29^{2} + 4\cdot 29^{3} + 10\cdot 29^{4} + 7\cdot 29^{5} + 13\cdot 29^{6} + 24\cdot 29^{7} + 29^{8} + 8\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,3,2)(4,5,6)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)$ $1$
$3$ $2$ $(1,6)(3,4)$ $-1$
$6$ $2$ $(2,3)(4,5)$ $1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $-1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(1,4,6,3)$ $1$
$6$ $4$ $(1,4,6,3)(2,5)$ $-1$
$8$ $6$ $(1,4,5,6,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.