Properties

Label 3.7e2_13_43.9t17.1c1
Dimension 3
Group $C_3 \wr C_3 $
Conductor $ 7^{2} \cdot 13 \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3 \wr C_3 $
Conductor:$27391= 7^{2} \cdot 13 \cdot 43 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} - 2 x^{7} + 22 x^{6} - 14 x^{5} - 22 x^{4} + 20 x^{3} + 2 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3 \wr C_3 $
Parity: Even
Determinant: 1.13_43.3t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{2} + 27 a + 12 + \left(38 a^{2} + 32 a + 15\right)\cdot 41 + \left(25 a^{2} + 27 a + 18\right)\cdot 41^{2} + \left(17 a^{2} + 17 a + 16\right)\cdot 41^{3} + \left(36 a^{2} + 10 a + 14\right)\cdot 41^{4} + \left(17 a^{2} + 16 a + 11\right)\cdot 41^{5} + \left(31 a^{2} + 16 a + 8\right)\cdot 41^{6} + \left(26 a^{2} + 18 a + 6\right)\cdot 41^{7} + \left(17 a^{2} + 34 a + 4\right)\cdot 41^{8} + \left(3 a^{2} + 19 a\right)\cdot 41^{9} + \left(16 a^{2} + 4 a + 37\right)\cdot 41^{10} + \left(12 a^{2} + 4\right)\cdot 41^{11} + \left(4 a^{2} + 22 a + 18\right)\cdot 41^{12} + \left(26 a^{2} + 7 a + 7\right)\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 37 a^{2} + 37 a + 34 + \left(27 a^{2} + 19 a + 35\right)\cdot 41 + \left(32 a^{2} + 22\right)\cdot 41^{2} + \left(33 a^{2} + 9 a + 13\right)\cdot 41^{3} + \left(29 a^{2} + 40 a + 37\right)\cdot 41^{4} + \left(17 a^{2} + 18 a + 24\right)\cdot 41^{5} + \left(8 a^{2} + 37 a + 6\right)\cdot 41^{6} + \left(29 a^{2} + 28 a + 35\right)\cdot 41^{7} + \left(2 a^{2} + 39 a + 7\right)\cdot 41^{8} + \left(37 a^{2} + 37 a + 36\right)\cdot 41^{9} + \left(37 a^{2} + 16 a + 37\right)\cdot 41^{10} + \left(3 a^{2} + 35 a + 12\right)\cdot 41^{11} + \left(27 a^{2} + 24 a + 33\right)\cdot 41^{12} + \left(26 a^{2} + 22 a + 7\right)\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 39 a + 20 + \left(11 a^{2} + 38 a + 39\right)\cdot 41 + \left(37 a^{2} + 2 a + 19\right)\cdot 41^{2} + \left(6 a^{2} + 28 a + 14\right)\cdot 41^{3} + \left(13 a^{2} + 22 a + 5\right)\cdot 41^{4} + \left(23 a^{2} + 26 a + 34\right)\cdot 41^{5} + \left(12 a^{2} + 12 a + 27\right)\cdot 41^{6} + \left(23 a^{2} + 14 a + 24\right)\cdot 41^{7} + \left(34 a^{2} + 3 a + 31\right)\cdot 41^{8} + \left(26 a^{2} + 11 a + 21\right)\cdot 41^{9} + \left(a^{2} + 19 a + 17\right)\cdot 41^{10} + \left(35 a^{2} + 35 a + 7\right)\cdot 41^{11} + \left(10 a^{2} + 11 a + 16\right)\cdot 41^{12} + \left(26 a^{2} + 36 a + 26\right)\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 23 + \left(16 a^{2} + 29 a\right)\cdot 41 + \left(23 a^{2} + 12 a + 3\right)\cdot 41^{2} + \left(30 a^{2} + 14 a + 25\right)\cdot 41^{3} + \left(15 a^{2} + 31 a\right)\cdot 41^{4} + \left(5 a^{2} + 5 a + 3\right)\cdot 41^{5} + \left(a^{2} + 28 a + 29\right)\cdot 41^{6} + \left(26 a^{2} + 34 a + 5\right)\cdot 41^{7} + \left(20 a^{2} + 7 a + 6\right)\cdot 41^{8} + \left(24 a + 39\right)\cdot 41^{9} + \left(28 a^{2} + 19 a + 3\right)\cdot 41^{10} + \left(24 a^{2} + 5 a + 13\right)\cdot 41^{11} + \left(9 a^{2} + 35 a + 35\right)\cdot 41^{12} + \left(29 a^{2} + 10 a + 36\right)\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 36 a^{2} + 6 a + 12 + \left(35 a^{2} + 17 a + 1\right)\cdot 41 + \left(17 a^{2} + 29 a + 7\right)\cdot 41^{2} + \left(35 a^{2} + 6 a + 6\right)\cdot 41^{3} + \left(37 a^{2} + 3 a + 8\right)\cdot 41^{4} + \left(39 a^{2} + 33 a + 4\right)\cdot 41^{5} + \left(34 a^{2} + a + 29\right)\cdot 41^{6} + \left(22 a^{2} + 36 a + 10\right)\cdot 41^{7} + \left(24 a^{2} + 23 a + 11\right)\cdot 41^{8} + \left(2 a^{2} + 28 a + 19\right)\cdot 41^{9} + \left(19 a^{2} + 20 a + 15\right)\cdot 41^{10} + \left(17 a^{2} + 14 a + 9\right)\cdot 41^{11} + \left(36 a^{2} + 23 a + 33\right)\cdot 41^{12} + \left(4 a^{2} + 24 a + 25\right)\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 13 + 12\cdot 41 + 36\cdot 41^{2} + 18\cdot 41^{3} + 28\cdot 41^{4} + 23\cdot 41^{5} + 12\cdot 41^{6} + 9\cdot 41^{7} + 40\cdot 41^{8} + 21\cdot 41^{9} + 26\cdot 41^{10} + 12\cdot 41^{11} + 7\cdot 41^{12} + 37\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 17 + 27\cdot 41 + 20\cdot 41^{2} + 18\cdot 41^{3} + 33\cdot 41^{4} + 15\cdot 41^{5} + 41^{6} + 24\cdot 41^{7} + 6\cdot 41^{8} + 8\cdot 41^{9} + 19\cdot 41^{10} + 24\cdot 41^{11} + 11\cdot 41^{12} + 9\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 23 + 17\cdot 41 + 36\cdot 41^{2} + 19\cdot 41^{4} + 29\cdot 41^{5} + 6\cdot 41^{6} + 15\cdot 41^{7} + 32\cdot 41^{8} + 5\cdot 41^{9} + 31\cdot 41^{10} + 20\cdot 41^{11} + 31\cdot 41^{12} + 38\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 39 a^{2} + 37 a + 14 + \left(34 a^{2} + 25 a + 14\right)\cdot 41 + \left(26 a^{2} + 8 a + 40\right)\cdot 41^{2} + \left(39 a^{2} + 6 a + 8\right)\cdot 41^{3} + \left(30 a^{2} + 15 a + 17\right)\cdot 41^{4} + \left(18 a^{2} + 22 a + 17\right)\cdot 41^{5} + \left(34 a^{2} + 26 a + 1\right)\cdot 41^{6} + \left(35 a^{2} + 31 a + 33\right)\cdot 41^{7} + \left(22 a^{2} + 13 a + 23\right)\cdot 41^{8} + \left(11 a^{2} + a + 11\right)\cdot 41^{9} + \left(20 a^{2} + a + 16\right)\cdot 41^{10} + \left(29 a^{2} + 32 a + 17\right)\cdot 41^{11} + \left(34 a^{2} + 5 a + 18\right)\cdot 41^{12} + \left(9 a^{2} + 21 a + 15\right)\cdot 41^{13} +O\left(41^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(6,7,8)$
$(1,2,4)$
$(1,6,3)(2,7,9)(4,8,5)$
$(3,5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,2,4)(3,9,5)(6,7,8)$$-3 \zeta_{3} - 3$
$1$$3$$(1,4,2)(3,5,9)(6,8,7)$$3 \zeta_{3}$
$3$$3$$(1,2,4)$$-\zeta_{3} + 1$
$3$$3$$(1,4,2)$$\zeta_{3} + 2$
$3$$3$$(1,2,4)(3,5,9)$$0$
$3$$3$$(1,4,2)(3,9,5)$$0$
$3$$3$$(1,4,2)(3,5,9)$$2 \zeta_{3} + 1$
$3$$3$$(1,2,4)(3,9,5)$$-2 \zeta_{3} - 1$
$3$$3$$(1,2,4)(3,5,9)(6,7,8)$$-\zeta_{3} - 2$
$3$$3$$(1,4,2)(3,9,5)(6,8,7)$$\zeta_{3} - 1$
$9$$3$$(1,6,3)(2,7,9)(4,8,5)$$0$
$9$$3$$(1,3,6)(2,9,7)(4,5,8)$$0$
$9$$9$$(1,7,9,2,8,5,4,6,3)$$0$
$9$$9$$(1,9,8,4,3,7,2,5,6)$$0$
$9$$9$$(1,9,7,2,5,8,4,3,6)$$0$
$9$$9$$(1,7,5,4,6,9,2,8,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.