Properties

Label 3.7e2_13_41.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 13 \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$26117= 7^{2} \cdot 13 \cdot 41 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x^{4} + 10 x^{3} + 10 x^{2} - 11 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 6 + \left(25 a + 24\right)\cdot 43 + \left(13 a + 24\right)\cdot 43^{2} + \left(27 a + 33\right)\cdot 43^{3} + \left(12 a + 20\right)\cdot 43^{4} + \left(23 a + 35\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 39 a + 10 + \left(17 a + 2\right)\cdot 43 + \left(29 a + 13\right)\cdot 43^{2} + \left(15 a + 4\right)\cdot 43^{3} + \left(30 a + 6\right)\cdot 43^{4} + \left(19 a + 3\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 1 + \left(4 a + 7\right)\cdot 43 + \left(18 a + 35\right)\cdot 43^{2} + \left(33 a + 3\right)\cdot 43^{3} + \left(18 a + 37\right)\cdot 43^{4} + \left(26 a + 14\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 + 4\cdot 43 + 24\cdot 43^{2} + 16\cdot 43^{3} + 12\cdot 43^{4} + 29\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 24 + 26\cdot 43^{2} + 8\cdot 43^{3} + 30\cdot 43^{4} + 23\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 8 + \left(38 a + 4\right)\cdot 43 + \left(24 a + 6\right)\cdot 43^{2} + \left(9 a + 19\right)\cdot 43^{3} + \left(24 a + 22\right)\cdot 43^{4} + \left(16 a + 22\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(4,5)$
$(3,6)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(1,2)$ $1$
$3$ $2$ $(1,2)(3,6)$ $-1$
$4$ $3$ $(1,4,3)(2,5,6)$ $0$
$4$ $3$ $(1,3,4)(2,6,5)$ $0$
$4$ $6$ $(1,5,6,2,4,3)$ $0$
$4$ $6$ $(1,3,4,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.