Properties

Label 3.7e2_13_29.6t6.3
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 13 \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$18473= 7^{2} \cdot 13 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 9 x^{3} + 7 x^{2} - 9 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 36 + \left(19 a + 23\right)\cdot 41 + \left(36 a + 1\right)\cdot 41^{2} + \left(26 a + 38\right)\cdot 41^{3} + \left(17 a + 6\right)\cdot 41^{4} + \left(28 a + 21\right)\cdot 41^{5} + \left(17 a + 18\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 19 + 6\cdot 41 + 14\cdot 41^{2} + 22\cdot 41^{3} + 26\cdot 41^{4} + 2\cdot 41^{5} + 7\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 10 + \left(25 a + 16\right)\cdot 41 + 13\cdot 41^{2} + \left(38 a + 32\right)\cdot 41^{3} + \left(19 a + 35\right)\cdot 41^{4} + \left(31 a + 2\right)\cdot 41^{5} + \left(13 a + 17\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 26 + 7\cdot 41 + 12\cdot 41^{2} + 7\cdot 41^{3} + 4\cdot 41^{4} + 12\cdot 41^{5} + 10\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 16 + \left(21 a + 33\right)\cdot 41 + \left(4 a + 9\right)\cdot 41^{2} + 14 a\cdot 41^{3} + \left(23 a + 33\right)\cdot 41^{4} + \left(12 a + 6\right)\cdot 41^{5} + \left(23 a + 2\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 17 + \left(15 a + 35\right)\cdot 41 + \left(40 a + 30\right)\cdot 41^{2} + \left(2 a + 22\right)\cdot 41^{3} + \left(21 a + 16\right)\cdot 41^{4} + \left(9 a + 36\right)\cdot 41^{5} + \left(27 a + 26\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,5)$
$(1,2,3)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,4)$ $-1$
$4$ $3$ $(1,2,3)(4,6,5)$ $0$
$4$ $3$ $(1,3,2)(4,5,6)$ $0$
$4$ $6$ $(1,4,6,5,2,3)$ $0$
$4$ $6$ $(1,3,2,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.