Properties

Label 3.7e2_13_29.6t6.2
Dimension 3
Group $A_4\times C_2$
Conductor $ 7^{2} \cdot 13 \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$18473= 7^{2} \cdot 13 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 5 x^{3} - 6 x^{2} + 8 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 80 a + 9 + \left(77 a + 1\right)\cdot 97 + \left(55 a + 11\right)\cdot 97^{2} + \left(8 a + 72\right)\cdot 97^{3} + \left(53 a + 74\right)\cdot 97^{4} + \left(89 a + 78\right)\cdot 97^{5} + \left(29 a + 29\right)\cdot 97^{6} + \left(68 a + 29\right)\cdot 97^{7} +O\left(97^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 43 + 70\cdot 97 + 90\cdot 97^{2} + 33\cdot 97^{3} + 93\cdot 97^{4} + 70\cdot 97^{5} + 27\cdot 97^{6} + 59\cdot 97^{7} +O\left(97^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 89 + \left(19 a + 95\right)\cdot 97 + \left(41 a + 85\right)\cdot 97^{2} + \left(88 a + 24\right)\cdot 97^{3} + \left(43 a + 22\right)\cdot 97^{4} + \left(7 a + 18\right)\cdot 97^{5} + \left(67 a + 67\right)\cdot 97^{6} + \left(28 a + 67\right)\cdot 97^{7} +O\left(97^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 58 a + 20 + \left(83 a + 84\right)\cdot 97 + \left(57 a + 12\right)\cdot 97^{2} + \left(34 a + 60\right)\cdot 97^{3} + \left(76 a + 27\right)\cdot 97^{4} + \left(42 a + 65\right)\cdot 97^{5} + \left(36 a + 51\right)\cdot 97^{6} + \left(27 a + 4\right)\cdot 97^{7} +O\left(97^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 55 + 26\cdot 97 + 6\cdot 97^{2} + 63\cdot 97^{3} + 3\cdot 97^{4} + 26\cdot 97^{5} + 69\cdot 97^{6} + 37\cdot 97^{7} +O\left(97^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 78 + \left(13 a + 12\right)\cdot 97 + \left(39 a + 84\right)\cdot 97^{2} + \left(62 a + 36\right)\cdot 97^{3} + \left(20 a + 69\right)\cdot 97^{4} + \left(54 a + 31\right)\cdot 97^{5} + \left(60 a + 45\right)\cdot 97^{6} + \left(69 a + 92\right)\cdot 97^{7} +O\left(97^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,3)$
$(4,6)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,5)$ $-1$
$4$ $3$ $(1,4,2)(3,6,5)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $0$
$4$ $6$ $(1,6,5,3,4,2)$ $0$
$4$ $6$ $(1,2,4,3,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.