Properties

Label 3.7e2_138041e2.4t4.1
Dimension 3
Group $A_4$
Conductor $ 7^{2} \cdot 138041^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$933710566369= 7^{2} \cdot 138041^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 1214 x^{2} - 16648 x - 30424 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 11 + 37\cdot 113 + 11\cdot 113^{2} + 72\cdot 113^{3} + 106\cdot 113^{4} + 68\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 103\cdot 113 + 39\cdot 113^{2} + 6\cdot 113^{3} + 17\cdot 113^{4} + 35\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 + 19\cdot 113 + 104\cdot 113^{2} + 7\cdot 113^{3} + 92\cdot 113^{4} + 2\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 71 + 66\cdot 113 + 70\cdot 113^{2} + 26\cdot 113^{3} + 10\cdot 113^{4} + 6\cdot 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$4$ $3$ $(1,2,3)$ $0$
$4$ $3$ $(1,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.