Properties

Label 3.7e2_109e2.4t4.1
Dimension 3
Group $A_4$
Conductor $ 7^{2} \cdot 109^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$582169= 7^{2} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 16 x^{2} + 17 x + 38 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 40\cdot 67 + 19\cdot 67^{2} + 56\cdot 67^{3} + 25\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 41\cdot 67 + 13\cdot 67^{2} + 23\cdot 67^{3} + 38\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 24\cdot 67 + 45\cdot 67^{2} + 15\cdot 67^{3} + 8\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 27\cdot 67 + 55\cdot 67^{2} + 38\cdot 67^{3} + 61\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$4$ $3$ $(1,2,3)$ $0$
$4$ $3$ $(1,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.