Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 27 + 37\cdot 241 + 235\cdot 241^{2} + 8\cdot 241^{3} + 193\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 69 + 118\cdot 241 + 93\cdot 241^{2} + 77\cdot 241^{3} + 108\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 72 + 201\cdot 241 + 19\cdot 241^{2} + 205\cdot 241^{3} + 146\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 74 + 125\cdot 241 + 133\cdot 241^{2} + 190\cdot 241^{3} + 33\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$-1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.