Properties

Label 3.7e2_107e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 7^{2} \cdot 107^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$561001= 7^{2} \cdot 107^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - x^{2} + 5 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 27 + 37\cdot 241 + 235\cdot 241^{2} + 8\cdot 241^{3} + 193\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 118\cdot 241 + 93\cdot 241^{2} + 77\cdot 241^{3} + 108\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 + 201\cdot 241 + 19\cdot 241^{2} + 205\cdot 241^{3} + 146\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 74 + 125\cdot 241 + 133\cdot 241^{2} + 190\cdot 241^{3} + 33\cdot 241^{4} +O\left(241^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.