Properties

Label 3.7_23e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 7 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3703= 7 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 14 x^{4} - 19 x^{3} + 54 x^{2} - 39 x + 55 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10\cdot 11 + 5\cdot 11^{2} + 8\cdot 11^{3} + 10\cdot 11^{4} + 2\cdot 11^{5} + 9\cdot 11^{6} + 9\cdot 11^{7} + 7\cdot 11^{8} + 7\cdot 11^{9} + 8\cdot 11^{10} + 2\cdot 11^{12} + 3\cdot 11^{13} +O\left(11^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 1 + \left(9 a + 8\right)\cdot 11 + 10 a\cdot 11^{2} + \left(7 a + 9\right)\cdot 11^{3} + 7\cdot 11^{4} + \left(7 a + 8\right)\cdot 11^{5} + \left(6 a + 10\right)\cdot 11^{6} + \left(2 a + 7\right)\cdot 11^{7} + \left(6 a + 8\right)\cdot 11^{8} + \left(10 a + 8\right)\cdot 11^{9} + a\cdot 11^{10} + \left(2 a + 2\right)\cdot 11^{11} + \left(7 a + 7\right)\cdot 11^{12} + \left(8 a + 5\right)\cdot 11^{13} +O\left(11^{ 14 }\right)$
$r_{ 3 }$ $=$ $ a + 1 + \left(4 a + 4\right)\cdot 11 + \left(9 a + 9\right)\cdot 11^{2} + \left(9 a + 1\right)\cdot 11^{3} + \left(2 a + 3\right)\cdot 11^{4} + \left(9 a + 10\right)\cdot 11^{5} + \left(3 a + 8\right)\cdot 11^{6} + \left(5 a + 9\right)\cdot 11^{7} + \left(9 a + 8\right)\cdot 11^{8} + \left(8 a + 4\right)\cdot 11^{9} + 6 a\cdot 11^{10} + 11^{11} + \left(7 a + 2\right)\cdot 11^{12} + \left(8 a + 9\right)\cdot 11^{13} +O\left(11^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 8 + 3\cdot 11 + 5\cdot 11^{2} + 6\cdot 11^{3} + 3\cdot 11^{4} + 7\cdot 11^{5} + 2\cdot 11^{6} + 10\cdot 11^{7} + 2\cdot 11^{9} + 6\cdot 11^{10} + 11^{11} + 2\cdot 11^{12} +O\left(11^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 5 + \left(6 a + 8\right)\cdot 11 + \left(a + 9\right)\cdot 11^{2} + \left(a + 9\right)\cdot 11^{3} + \left(8 a + 4\right)\cdot 11^{4} + a\cdot 11^{5} + \left(7 a + 4\right)\cdot 11^{6} + \left(5 a + 5\right)\cdot 11^{7} + \left(a + 8\right)\cdot 11^{8} + \left(2 a + 8\right)\cdot 11^{9} + \left(4 a + 7\right)\cdot 11^{10} + \left(10 a + 7\right)\cdot 11^{11} + \left(3 a + 7\right)\cdot 11^{12} + \left(2 a + 3\right)\cdot 11^{13} +O\left(11^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 9 + \left(a + 9\right)\cdot 11 + 11^{2} + \left(3 a + 8\right)\cdot 11^{3} + \left(10 a + 2\right)\cdot 11^{4} + \left(3 a + 3\right)\cdot 11^{5} + \left(4 a + 8\right)\cdot 11^{6} + 8 a\cdot 11^{7} + \left(4 a + 9\right)\cdot 11^{8} + \left(9 a + 9\right)\cdot 11^{10} + \left(8 a + 8\right)\cdot 11^{11} + 3 a\cdot 11^{12} + 2 a\cdot 11^{13} +O\left(11^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,4)(2,3,5,6)$$1$
$8$$6$$(1,2,3,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.