Properties

Label 3.7_19e2_53e2.6t11.6
Dimension 3
Group $S_4\times C_2$
Conductor $ 7 \cdot 19^{2} \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7098343= 7 \cdot 19^{2} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} - 55 x^{3} + 58 x^{2} + 1064 x + 1064 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 5 + \left(36 a + 44\right)\cdot 59 + \left(31 a + 52\right)\cdot 59^{2} + \left(6 a + 21\right)\cdot 59^{3} + \left(35 a + 2\right)\cdot 59^{4} + \left(8 a + 46\right)\cdot 59^{5} + \left(52 a + 58\right)\cdot 59^{6} + \left(8 a + 56\right)\cdot 59^{7} + \left(6 a + 50\right)\cdot 59^{8} + \left(29 a + 40\right)\cdot 59^{9} + 20 a\cdot 59^{10} +O\left(59^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 52 + \left(5 a + 58\right)\cdot 59 + \left(52 a + 47\right)\cdot 59^{2} + \left(29 a + 28\right)\cdot 59^{3} + \left(4 a + 23\right)\cdot 59^{4} + \left(23 a + 34\right)\cdot 59^{5} + \left(35 a + 15\right)\cdot 59^{6} + \left(25 a + 20\right)\cdot 59^{7} + \left(49 a + 40\right)\cdot 59^{8} + \left(18 a + 41\right)\cdot 59^{9} + \left(40 a + 55\right)\cdot 59^{10} +O\left(59^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 22 + \left(22 a + 4\right)\cdot 59 + \left(27 a + 48\right)\cdot 59^{2} + \left(52 a + 55\right)\cdot 59^{3} + \left(23 a + 30\right)\cdot 59^{4} + \left(50 a + 19\right)\cdot 59^{5} + \left(6 a + 43\right)\cdot 59^{6} + \left(50 a + 13\right)\cdot 59^{7} + \left(52 a + 48\right)\cdot 59^{8} + \left(29 a + 4\right)\cdot 59^{9} + \left(38 a + 51\right)\cdot 59^{10} +O\left(59^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 19 + 37\cdot 59 + 15\cdot 59^{2} + 39\cdot 59^{3} + 22\cdot 59^{4} + 52\cdot 59^{5} + 11\cdot 59^{6} + 25\cdot 59^{7} + 5\cdot 59^{8} + 7\cdot 59^{9} + 37\cdot 59^{10} +O\left(59^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 9 + 47\cdot 59 + 35\cdot 59^{2} + 24\cdot 59^{3} + 40\cdot 59^{4} + 30\cdot 59^{5} + 19\cdot 59^{6} + 50\cdot 59^{7} + 26\cdot 59^{8} + 12\cdot 59^{9} + 14\cdot 59^{10} +O\left(59^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 13 + \left(53 a + 44\right)\cdot 59 + \left(6 a + 35\right)\cdot 59^{2} + \left(29 a + 6\right)\cdot 59^{3} + \left(54 a + 57\right)\cdot 59^{4} + \left(35 a + 52\right)\cdot 59^{5} + \left(23 a + 27\right)\cdot 59^{6} + \left(33 a + 10\right)\cdot 59^{7} + \left(9 a + 5\right)\cdot 59^{8} + \left(40 a + 11\right)\cdot 59^{9} + \left(18 a + 18\right)\cdot 59^{10} +O\left(59^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)$
$(1,2)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,2)(3,6)$ $-1$
$6$ $2$ $(1,4)(2,5)$ $1$
$6$ $2$ $(1,4)(2,5)(3,6)$ $-1$
$8$ $3$ $(1,4,3)(2,5,6)$ $0$
$6$ $4$ $(1,3,2,6)$ $1$
$6$ $4$ $(1,2)(3,5,6,4)$ $-1$
$8$ $6$ $(1,4,3,2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.