Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 23\cdot 61 + 30\cdot 61^{2} + 47\cdot 61^{3} + 11\cdot 61^{4} + 26\cdot 61^{5} + 38\cdot 61^{6} +O\left(61^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 41 a + 54 + \left(59 a + 34\right)\cdot 61 + \left(56 a + 7\right)\cdot 61^{2} + \left(53 a + 25\right)\cdot 61^{3} + \left(53 a + 56\right)\cdot 61^{4} + \left(2 a + 59\right)\cdot 61^{5} + \left(59 a + 18\right)\cdot 61^{6} +O\left(61^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 a + 34 + \left(a + 53\right)\cdot 61 + \left(4 a + 4\right)\cdot 61^{2} + \left(7 a + 22\right)\cdot 61^{3} + \left(7 a + 56\right)\cdot 61^{4} + \left(58 a + 8\right)\cdot 61^{5} + \left(a + 14\right)\cdot 61^{6} +O\left(61^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 59 a + 26 + \left(9 a + 50\right)\cdot 61 + \left(43 a + 44\right)\cdot 61^{2} + \left(30 a + 60\right)\cdot 61^{3} + \left(34 a + 15\right)\cdot 61^{4} + \left(54 a + 33\right)\cdot 61^{5} + \left(23 a + 5\right)\cdot 61^{6} +O\left(61^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 2 a + 24 + \left(51 a + 1\right)\cdot 61 + \left(17 a + 17\right)\cdot 61^{2} + \left(30 a + 48\right)\cdot 61^{3} + \left(26 a + 19\right)\cdot 61^{4} + \left(6 a + 53\right)\cdot 61^{5} + \left(37 a + 35\right)\cdot 61^{6} +O\left(61^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 28 + 19\cdot 61 + 17\cdot 61^{2} + 40\cdot 61^{3} + 22\cdot 61^{4} + 61^{5} + 9\cdot 61^{6} +O\left(61^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(4,6)$ |
| $(1,6)$ |
| $(1,2,3)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,6)(2,4)(3,5)$ |
$-3$ |
| $3$ |
$2$ |
$(1,6)$ |
$1$ |
| $3$ |
$2$ |
$(1,6)(2,4)$ |
$-1$ |
| $6$ |
$2$ |
$(2,3)(4,5)$ |
$-1$ |
| $6$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $6$ |
$4$ |
$(1,4,6,2)$ |
$-1$ |
| $6$ |
$4$ |
$(1,6)(2,5,4,3)$ |
$1$ |
| $8$ |
$6$ |
$(1,4,5,6,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.