Properties

Label 3.7_17_23e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 7 \cdot 17 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$62951= 7 \cdot 17 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} - x^{3} + 26 x^{2} + 16 x - 40 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.7_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 46 + 13\cdot 79 + 62\cdot 79^{2} + 67\cdot 79^{3} + 53\cdot 79^{4} + 28\cdot 79^{5} + 7\cdot 79^{6} + 56\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 13 + 44\cdot 79 + 78\cdot 79^{2} + 16\cdot 79^{3} + 65\cdot 79^{4} + 47\cdot 79^{5} + 70\cdot 79^{6} + 40\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 56 + \left(66 a + 15\right)\cdot 79 + \left(33 a + 54\right)\cdot 79^{2} + \left(56 a + 7\right)\cdot 79^{3} + \left(44 a + 49\right)\cdot 79^{4} + \left(78 a + 6\right)\cdot 79^{5} + \left(24 a + 50\right)\cdot 79^{6} + \left(45 a + 57\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 73 + \left(a + 78\right)\cdot 79 + \left(61 a + 19\right)\cdot 79^{2} + \left(60 a + 57\right)\cdot 79^{3} + \left(40 a + 25\right)\cdot 79^{4} + \left(14 a + 30\right)\cdot 79^{5} + \left(17 a + 15\right)\cdot 79^{6} + \left(6 a + 47\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 54 a + 19 + \left(77 a + 55\right)\cdot 79 + 17 a\cdot 79^{2} + \left(18 a + 57\right)\cdot 79^{3} + \left(38 a + 5\right)\cdot 79^{4} + \left(64 a + 4\right)\cdot 79^{5} + \left(61 a + 18\right)\cdot 79^{6} + \left(72 a + 36\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 30 + \left(12 a + 29\right)\cdot 79 + \left(45 a + 21\right)\cdot 79^{2} + \left(22 a + 30\right)\cdot 79^{3} + \left(34 a + 37\right)\cdot 79^{4} + 40\cdot 79^{5} + \left(54 a + 75\right)\cdot 79^{6} + \left(33 a + 77\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,3,5)(2,4,6)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(3,4)(5,6)$$-1$
$6$$2$$(1,5)(2,6)$$1$
$6$$2$$(1,5)(2,6)(3,4)$$-1$
$8$$3$$(1,3,5)(2,4,6)$$0$
$6$$4$$(3,6,4,5)$$1$
$6$$4$$(1,6,2,5)(3,4)$$-1$
$8$$6$$(1,3,6,2,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.