Properties

Label 3.7_157e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 7 \cdot 157^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$172543= 7 \cdot 157^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 8 x^{4} - 4 x^{3} - x^{2} - 18 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 44\cdot 47 + 3\cdot 47^{2} + 27\cdot 47^{3} + 20\cdot 47^{4} + 5\cdot 47^{5} + 41\cdot 47^{6} + 33\cdot 47^{7} + 14\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 33 + \left(22 a + 37\right)\cdot 47 + \left(21 a + 34\right)\cdot 47^{2} + \left(10 a + 37\right)\cdot 47^{3} + \left(36 a + 23\right)\cdot 47^{4} + \left(35 a + 37\right)\cdot 47^{5} + \left(7 a + 27\right)\cdot 47^{6} + \left(31 a + 43\right)\cdot 47^{7} + \left(8 a + 30\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 43 + \left(16 a + 4\right)\cdot 47 + \left(13 a + 39\right)\cdot 47^{2} + \left(18 a + 28\right)\cdot 47^{3} + \left(28 a + 18\right)\cdot 47^{4} + \left(23 a + 38\right)\cdot 47^{5} + 32\cdot 47^{6} + \left(31 a + 38\right)\cdot 47^{7} + \left(10 a + 37\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 42 + \left(30 a + 14\right)\cdot 47 + \left(33 a + 2\right)\cdot 47^{2} + \left(28 a + 5\right)\cdot 47^{3} + \left(18 a + 10\right)\cdot 47^{4} + \left(23 a + 10\right)\cdot 47^{5} + \left(46 a + 10\right)\cdot 47^{6} + \left(15 a + 6\right)\cdot 47^{7} + \left(36 a + 28\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 22 + 34\cdot 47 + 5\cdot 47^{2} + 5\cdot 47^{3} + 29\cdot 47^{4} + 23\cdot 47^{5} + 21\cdot 47^{6} + 14\cdot 47^{7} + 12\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 1 + \left(24 a + 5\right)\cdot 47 + \left(25 a + 8\right)\cdot 47^{2} + \left(36 a + 37\right)\cdot 47^{3} + \left(10 a + 38\right)\cdot 47^{4} + \left(11 a + 25\right)\cdot 47^{5} + \left(39 a + 7\right)\cdot 47^{6} + \left(15 a + 4\right)\cdot 47^{7} + \left(38 a + 17\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)(3,6,5)$
$(1,2)(3,5)$
$(1,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,3)(4,6)$$-3$
$3$$2$$(1,5)(2,3)$$-1$
$3$$2$$(1,5)$$1$
$6$$2$$(1,2)(3,5)$$1$
$6$$2$$(1,4)(2,3)(5,6)$$-1$
$8$$3$$(1,2,4)(3,6,5)$$0$
$6$$4$$(1,2,5,3)$$1$
$6$$4$$(1,6,5,4)(2,3)$$-1$
$8$$6$$(1,3,6,5,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.