Properties

Label 3.7_11_23e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 7 \cdot 11 \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$40733= 7 \cdot 11 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 7 x^{4} - 2 x^{3} + 24 x^{2} + 5 x + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 29 + 44\cdot 79 + 16\cdot 79^{2} + 16\cdot 79^{3} + 25\cdot 79^{4} + 20\cdot 79^{5} + 66\cdot 79^{6} + 16\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 46 + 58\cdot 79 + 36\cdot 79^{2} + 48\cdot 79^{3} + 30\cdot 79^{4} + 25\cdot 79^{5} + 8\cdot 79^{6} + 15\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 9 + \left(60 a + 42\right)\cdot 79 + \left(42 a + 51\right)\cdot 79^{2} + \left(16 a + 66\right)\cdot 79^{3} + \left(45 a + 58\right)\cdot 79^{4} + \left(14 a + 67\right)\cdot 79^{5} + \left(2 a + 52\right)\cdot 79^{6} + \left(a + 42\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 23 + \left(23 a + 72\right)\cdot 79 + \left(46 a + 76\right)\cdot 79^{2} + \left(15 a + 47\right)\cdot 79^{3} + \left(69 a + 69\right)\cdot 79^{4} + \left(76 a + 78\right)\cdot 79^{5} + \left(40 a + 12\right)\cdot 79^{6} + \left(66 a + 8\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 70 a + 32 + \left(55 a + 7\right)\cdot 79 + \left(32 a + 21\right)\cdot 79^{2} + \left(63 a + 17\right)\cdot 79^{3} + \left(9 a + 44\right)\cdot 79^{4} + \left(2 a + 7\right)\cdot 79^{5} + \left(38 a + 56\right)\cdot 79^{6} + \left(12 a + 33\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 68 a + 20 + \left(18 a + 12\right)\cdot 79 + \left(36 a + 34\right)\cdot 79^{2} + \left(62 a + 40\right)\cdot 79^{3} + \left(33 a + 8\right)\cdot 79^{4} + \left(64 a + 37\right)\cdot 79^{5} + \left(76 a + 40\right)\cdot 79^{6} + \left(77 a + 41\right)\cdot 79^{7} +O\left(79^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,3,5)(2,4,6)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$3$ $2$ $(3,4)$ $1$
$3$ $2$ $(3,4)(5,6)$ $-1$
$6$ $2$ $(1,5)(2,6)$ $1$
$6$ $2$ $(1,5)(2,6)(3,4)$ $-1$
$8$ $3$ $(1,3,5)(2,4,6)$ $0$
$6$ $4$ $(3,6,4,5)$ $1$
$6$ $4$ $(1,6,2,5)(3,4)$ $-1$
$8$ $6$ $(1,3,6,2,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.