Properties

Label 3.7_11_23e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 7 \cdot 11 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$40733= 7 \cdot 11 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} - 3 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.7_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 45 + \left(36 a + 43\right)\cdot 53 + \left(14 a + 33\right)\cdot 53^{2} + \left(41 a + 26\right)\cdot 53^{3} + \left(15 a + 21\right)\cdot 53^{4} + \left(20 a + 6\right)\cdot 53^{5} + \left(13 a + 20\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 24 + 49\cdot 53 + 49\cdot 53^{2} + 4\cdot 53^{3} + 45\cdot 53^{4} + 50\cdot 53^{5} + 8\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 29 a + 28 + \left(15 a + 10\right)\cdot 53 + \left(3 a + 51\right)\cdot 53^{2} + \left(4 a + 36\right)\cdot 53^{3} + \left(21 a + 29\right)\cdot 53^{4} + \left(51 a + 30\right)\cdot 53^{5} + \left(41 a + 42\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 36 + 6\cdot 53 + 25\cdot 53^{2} + 22\cdot 53^{3} + 15\cdot 53^{4} + 49\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 43 + \left(16 a + 4\right)\cdot 53 + \left(38 a + 3\right)\cdot 53^{2} + \left(11 a + 18\right)\cdot 53^{3} + \left(37 a + 43\right)\cdot 53^{4} + \left(32 a + 18\right)\cdot 53^{5} + 39 a\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 38 + \left(37 a + 43\right)\cdot 53 + \left(49 a + 48\right)\cdot 53^{2} + \left(48 a + 49\right)\cdot 53^{3} + \left(31 a + 3\right)\cdot 53^{4} + \left(a + 3\right)\cdot 53^{5} + 11 a\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(3,6)$
$(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,4)(5,6)$$-3$
$3$$2$$(1,3)(5,6)$$-1$
$3$$2$$(1,3)$$1$
$6$$2$$(1,5)(3,6)$$-1$
$6$$2$$(1,3)(2,5)(4,6)$$1$
$8$$3$$(1,2,5)(3,4,6)$$0$
$6$$4$$(1,6,3,5)$$-1$
$6$$4$$(1,6,3,5)(2,4)$$1$
$8$$6$$(1,6,4,3,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.