Properties

Label 3.7537e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 7537^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$56806369= 7537^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 5 x^{2} - 4 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 122\cdot 151 + 136\cdot 151^{2} + 42\cdot 151^{3} + 77\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 + 55\cdot 151 + 48\cdot 151^{2} + 24\cdot 151^{3} + 72\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 108 + 118\cdot 151 + 89\cdot 151^{2} + 75\cdot 151^{3} + 62\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 120 + 5\cdot 151 + 27\cdot 151^{2} + 8\cdot 151^{3} + 90\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.