Properties

Label 3.697.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $697$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(697\)\(\medspace = 17 \cdot 41 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.697.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.697.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.697.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 2x^{2} - x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( a + 8 + \left(4 a + 6\right)\cdot 11 + 9 a\cdot 11^{2} + \left(6 a + 6\right)\cdot 11^{3} + \left(a + 5\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a + 1 + 3\cdot 11 + 5 a\cdot 11^{2} + 3\cdot 11^{3} +O(11^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 10 a + 1 + 6 a\cdot 11 + \left(a + 1\right)\cdot 11^{2} + \left(4 a + 2\right)\cdot 11^{3} + \left(9 a + 5\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 8 a + 2 + \left(10 a + 1\right)\cdot 11 + \left(5 a + 9\right)\cdot 11^{2} + \left(10 a + 10\right)\cdot 11^{3} + \left(10 a + 10\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$