Properties

Label 3.6883e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 6883^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$47375689= 6883^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 2 x^{2} - 2 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 96 + 141\cdot 331 + 213\cdot 331^{2} + 283\cdot 331^{3} + 116\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 148 + 31\cdot 331 + 167\cdot 331^{2} + 93\cdot 331^{3} + 297\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 198 + 304\cdot 331 + 39\cdot 331^{2} + 102\cdot 331^{3} + 330\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 221 + 184\cdot 331 + 241\cdot 331^{2} + 182\cdot 331^{3} + 248\cdot 331^{4} +O\left(331^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.