Properties

Label 3.688.4t5.b.a
Dimension $3$
Group $S_4$
Conductor $688$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.688.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.43.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.688.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 91 + 97\cdot 173 + 151\cdot 173^{2} + 23\cdot 173^{3} + 65\cdot 173^{4} +O(173^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 116 + 133\cdot 173 + 132\cdot 173^{2} + 27\cdot 173^{3} + 169\cdot 173^{4} +O(173^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 155 + 37\cdot 173 + 58\cdot 173^{2} + 151\cdot 173^{3} + 85\cdot 173^{4} +O(173^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 157 + 76\cdot 173 + 3\cdot 173^{2} + 143\cdot 173^{3} + 25\cdot 173^{4} +O(173^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$