Properties

Label 3.643.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $643$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(643\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.643.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.643.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.643.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 293 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 24 + 26\cdot 293 + 236\cdot 293^{2} + 221\cdot 293^{3} + 262\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 36 + 18\cdot 293 + 2\cdot 293^{2} + 248\cdot 293^{3} + 85\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 64 + 279\cdot 293 + 85\cdot 293^{2} + 42\cdot 293^{3} + 140\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 170 + 262\cdot 293 + 261\cdot 293^{2} + 73\cdot 293^{3} + 97\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$