Properties

Label 3.607e2.4t4.1c1
Dimension 3
Group $A_4$
Conductor $ 607^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$368449= 607^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 13 x^{2} + 7 x + 33 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 72\cdot 137 + 21\cdot 137^{2} + 5\cdot 137^{3} + 3\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 + 23\cdot 137 + 123\cdot 137^{2} + 12\cdot 137^{3} + 106\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 90 + 92\cdot 137 + 121\cdot 137^{2} + 94\cdot 137^{3} + 60\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 132 + 85\cdot 137 + 7\cdot 137^{2} + 24\cdot 137^{3} + 104\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.