Properties

Label 3.5e3_7e2_41e2.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 5^{3} \cdot 7^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$10296125= 5^{3} \cdot 7^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 38 x^{4} + 12 x^{3} + 32 x^{2} + 719 x - 3361 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 5 + 25 a\cdot 71 + \left(60 a + 22\right)\cdot 71^{2} + \left(51 a + 26\right)\cdot 71^{3} + \left(63 a + 38\right)\cdot 71^{4} + \left(70 a + 58\right)\cdot 71^{5} + \left(2 a + 44\right)\cdot 71^{6} + \left(41 a + 65\right)\cdot 71^{7} + \left(32 a + 56\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 48 + \left(41 a + 42\right)\cdot 71 + \left(32 a + 68\right)\cdot 71^{2} + \left(61 a + 17\right)\cdot 71^{3} + \left(12 a + 30\right)\cdot 71^{4} + \left(10 a + 54\right)\cdot 71^{5} + \left(12 a + 33\right)\cdot 71^{6} + \left(23 a + 7\right)\cdot 71^{7} + \left(58 a + 66\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 10 + \left(45 a + 13\right)\cdot 71 + \left(10 a + 46\right)\cdot 71^{2} + \left(19 a + 69\right)\cdot 71^{3} + \left(7 a + 42\right)\cdot 71^{4} + 65\cdot 71^{5} + \left(68 a + 50\right)\cdot 71^{6} + \left(29 a + 2\right)\cdot 71^{7} + \left(38 a + 10\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 56 + 66\cdot 71 + 8\cdot 71^{2} + 45\cdot 71^{3} + 51\cdot 71^{4} + 47\cdot 71^{5} + 50\cdot 71^{6} + 56\cdot 71^{7} + 42\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 20 + 50\cdot 71 + 45\cdot 71^{2} + 16\cdot 71^{3} + 55\cdot 71^{4} + 66\cdot 71^{5} + 55\cdot 71^{6} + 38\cdot 71^{7} + 19\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 57 a + 5 + \left(29 a + 40\right)\cdot 71 + \left(38 a + 21\right)\cdot 71^{2} + \left(9 a + 37\right)\cdot 71^{3} + \left(58 a + 65\right)\cdot 71^{4} + \left(60 a + 61\right)\cdot 71^{5} + \left(58 a + 47\right)\cdot 71^{6} + \left(47 a + 41\right)\cdot 71^{7} + \left(12 a + 17\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)(3,6,5)$
$(1,3)$
$(4,5)$
$(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,6)$ $-1$
$4$ $3$ $(1,2,4)(3,6,5)$ $0$
$4$ $3$ $(1,4,2)(3,5,6)$ $0$
$4$ $6$ $(1,6,5,3,2,4)$ $0$
$4$ $6$ $(1,4,2,3,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.